Abstract
1. The effects of osmotic or electrical stimulation of the organum vasculosum lamina terminalis (OVLT) were examined during intracellular recordings (32 degrees C) obtained from ninety-five supraoptic nucleus magnocellular neurosecretory cells (MNCs) in superfused explants of rat hypothalamus. 2. Brief (10-20 s) applications of hypertonic and hypotonic solutions to the area of the OVLT caused prolonged (> 1 min) increases and decreases, respectively, in electrical activity in seventy of seventy-four trials performed on neurones with membrane potentials near spike threshold (approximately -55 mV). Changes in firing frequency were related to changes in external osmolality in a dose-dependent manner between 275 and 355 mosmol kg-1. 3. When 30 s periods recorded immediately before, and 30 s following, the application of an osmotic stimulus were examined, the frequency of spontaneous EPSPs (sEPSPs) was related in a dose-dependent manner to the osmolality of the solution superfusing the OVLT region. The increased EPSP frequency was maintained and did not adapt if the osmolality of the medium was raised for periods of > 10 min. In contrast, the frequency of spontaneous IPSPs (sIPSPs) was virtually unaffected by changes in external osmotic pressure. 4. Osmotically evoked changes in MNC firing were strongly correlated with accompanying changes in the frequency of sEPSPs (slope, 0.9; correlation coefficient (r) = 0.7), but not sIPSPs (r = 0.2), suggesting that changes in firing rate following osmotic stimulation of the OVLT are selectively mediated by changes in synaptic excitation. 5. In the presence of bicuculline (5-10 microM), electrical stimulation of the OVLT evoked fast EPSPs in forty-seven of forty-eight MNCs tested. These responses were reversibly reduced by application of 20-40 microM kynurenic acid (n = 3) or 20-40 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; n = 11). Similarly, bath application of CNQX (n = 3) or kynurenic acid (n = 4) reversibly abolished the excitatory response of supraoptic neurones following hypertonic stimulation of the OVLT. 6. Brief (10-15 s) applications of gamma-aminobutyric acid (GABA) over the OVLT reversibly abolished increases in sEPSP frequency and action potential firing rate evoked by hyperosmotic stimulation of the OVLT. In the presence of GABA, the rates of sEPSP and sIPSP frequency were reduced to 37 +/- 10 and 44 +/- 13% (means +/- S.E.M.), respectively, of those observed under isotonic conditions (295 mosmol kg-1). 7. These results suggest that inhibitory and excitatory pathways originating from neurones located within the OVLT are tonically active under resting osmotic conditions in rat hypothalamic explants. Osmotically evoked changes in MNC firing, however, are selectively mediated through increases or decreases in the intensity of the excitatory component of OVLT-derived inputs.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blackburn R. E., Leng G., Russell J. A. Control of magnocellular oxytocin neurones by the region anterior and ventral to the third ventricle (AV3V region) in rats. J Endocrinol. 1987 Aug;114(2):253–261. doi: 10.1677/joe.0.1140253. [DOI] [PubMed] [Google Scholar]
- Bourque C. W. Ionic basis for the intrinsic activation of rat supraoptic neurones by hyperosmotic stimuli. J Physiol. 1989 Oct;417:263–277. doi: 10.1113/jphysiol.1989.sp017800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourque C. W., Oliet S. H., Kirkpatrick K., Richard D., Fisher T. E. Extrinsic and intrinsic modulatory mechanisms involved in regulating the electrical activity of supraoptic neurons. Ann N Y Acad Sci. 1993 Jul 22;689:512–519. doi: 10.1111/j.1749-6632.1993.tb55581.x. [DOI] [PubMed] [Google Scholar]
- Bourque C. W., Renaud L. P. Membrane properties of rat magnocellular neuroendocrine cells in vivo. Brain Res. 1991 Feb 1;540(1-2):349–352. doi: 10.1016/0006-8993(91)90535-4. [DOI] [PubMed] [Google Scholar]
- Brimble M. J., Dyball R. E. Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. J Physiol. 1977 Sep;271(1):253–271. doi: 10.1113/jphysiol.1977.sp011999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaudhry M. A., Dyball R. E., Honda K., Wright N. C. The role of interconnection between supraoptic nucleus and anterior third ventricular region in osmoregulation in the rat. J Physiol. 1989 Mar;410:123–135. doi: 10.1113/jphysiol.1989.sp017524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conrad K. P., Gellai M., North W. G., Valtin H. Influence of oxytocin on renal hemodynamics and sodium excretion. Ann N Y Acad Sci. 1993 Jul 22;689:346–362. doi: 10.1111/j.1749-6632.1993.tb55559.x. [DOI] [PubMed] [Google Scholar]
- Dunn F. L., Brennan T. J., Nelson A. E., Robertson G. L. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest. 1973 Dec;52(12):3212–3219. doi: 10.1172/JCI107521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honda K., Negoro H., Dyball R. E., Higuchi T., Takano S. The osmoreceptor complex in the rat: evidence for interactions between the supraoptic and other diencephalic nuclei. J Physiol. 1990 Dec;431:225–241. doi: 10.1113/jphysiol.1990.sp018328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honda K., Negoro H., Higuchi T., Tadokoro Y. Activation of neurosecretory cells by osmotic stimulation of anteroventral third ventricle. Am J Physiol. 1987 Jun;252(6 Pt 2):R1039–R1045. doi: 10.1152/ajpregu.1987.252.6.R1039. [DOI] [PubMed] [Google Scholar]
- Mason W. T. Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro. Proc R Soc Lond B Biol Sci. 1983 Jan 22;217(1207):141–161. doi: 10.1098/rspb.1983.0003. [DOI] [PubMed] [Google Scholar]
- Mason W. T. Supraoptic neurones of rat hypothalamus are osmosensitive. Nature. 1980 Sep 11;287(5778):154–157. doi: 10.1038/287154a0. [DOI] [PubMed] [Google Scholar]
- McDonald K. M., Miller P. D., Anderson R. J., Berl T., Schrier R. W. Hormonal control of renal water excretion. Kidney Int. 1976 Jul;10(1):38–45. doi: 10.1038/ki.1976.77. [DOI] [PubMed] [Google Scholar]
- McKinley M. J., Bicknell R. J., Hards D., McAllen R. M., Vivas L., Weisinger R. S., Oldfield B. J. Efferent neural pathways of the lamina terminalis subserving osmoregulation. Prog Brain Res. 1992;91:395–402. doi: 10.1016/s0079-6123(08)62358-4. [DOI] [PubMed] [Google Scholar]
- Negoro H., Higuchi T., Tadokoro Y., Honda K. Osmoreceptor mechanism for oxytocin release in the rat. Jpn J Physiol. 1988;38(1):19–31. doi: 10.2170/jjphysiol.38.19. [DOI] [PubMed] [Google Scholar]
- Nissen R., Bourque C. W., Renaud L. P. Membrane properties of organum vasculosum lamina terminalis neurons recorded in vitro. Am J Physiol. 1993 Apr;264(4 Pt 2):R811–R815. doi: 10.1152/ajpregu.1993.264.4.R811. [DOI] [PubMed] [Google Scholar]
- Oliet S. H., Bourque C. W. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature. 1993 Jul 22;364(6435):341–343. doi: 10.1038/364341a0. [DOI] [PubMed] [Google Scholar]
- Oliet S. H., Bourque C. W. Osmoreception in magnocellular neurosecretory cells: from single channels to secretion. Trends Neurosci. 1994 Aug;17(8):340–344. doi: 10.1016/0166-2236(94)90177-5. [DOI] [PubMed] [Google Scholar]
- Oliet S. H., Bourque C. W. Steady-state osmotic modulation of cationic conductance in neurons of rat supraoptic nucleus. Am J Physiol. 1993 Dec;265(6 Pt 2):R1475–R1479. doi: 10.1152/ajpregu.1993.265.6.R1475. [DOI] [PubMed] [Google Scholar]
- Renaud L. P., Cunningham J. T., Nissen R., Yang C. R. Electrophysiology of central pathways controlling release of neurohypophysial hormones. Focus on the lamina terminalis and diagonal band inputs to the supraoptic nucleus. Ann N Y Acad Sci. 1993 Jul 22;689:122–132. doi: 10.1111/j.1749-6632.1993.tb55542.x. [DOI] [PubMed] [Google Scholar]
- Richard D., Bourque C. W. Synaptic activation of rat supraoptic neurons by osmotic stimulation of the organum vasculosum lamina terminalis. Neuroendocrinology. 1992 May;55(5):609–611. doi: 10.1159/000126174. [DOI] [PubMed] [Google Scholar]
- Stricker E. M., Verbalis J. G. Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. Am J Physiol. 1986 Feb;250(2 Pt 2):R267–R275. doi: 10.1152/ajpregu.1986.250.2.R267. [DOI] [PubMed] [Google Scholar]
- Travis K. A., Johnson A. K. In vitro sensitivity of median preoptic neurons to angiotensin II, osmotic pressure, and temperature. Am J Physiol. 1993 Jun;264(6 Pt 2):R1200–R1205. doi: 10.1152/ajpregu.1993.264.6.R1200. [DOI] [PubMed] [Google Scholar]
- Vandesande F., Dierickx K. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat. Cell Tissue Res. 1975 Dec 2;164(2):153–162. doi: 10.1007/BF00218970. [DOI] [PubMed] [Google Scholar]
- Verbalis J. G., Dohanics J. Vasopressin and oxytocin secretion in chronically hyposmolar rats. Am J Physiol. 1991 Oct;261(4 Pt 2):R1028–R1038. doi: 10.1152/ajpregu.1991.261.4.R1028. [DOI] [PubMed] [Google Scholar]
- Verbalis J. G., Mangione M. P., Stricker E. M. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology. 1991 Mar;128(3):1317–1322. doi: 10.1210/endo-128-3-1317. [DOI] [PubMed] [Google Scholar]
- Verbalis J. G. Osmotic inhibition of neurohypophysial secretion. Ann N Y Acad Sci. 1993 Jul 22;689:146–160. doi: 10.1111/j.1749-6632.1993.tb55544.x. [DOI] [PubMed] [Google Scholar]
- Wilkin L. D., Mitchell L. D., Ganten D., Johnson A. K. The supraoptic nucleus: afferents from areas involved in control of body fluid homeostasis. Neuroscience. 1989;28(3):573–584. doi: 10.1016/0306-4522(89)90006-7. [DOI] [PubMed] [Google Scholar]
- Yang C. R., Senatorov V. V., Renaud L. P. Organum vasculosum lamina terminalis-evoked postsynaptic responses in rat supraoptic neurones in vitro. J Physiol. 1994 May 15;477(Pt 1):59–74. doi: 10.1113/jphysiol.1994.sp020171. [DOI] [PMC free article] [PubMed] [Google Scholar]