Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Nov 15;489(Pt 1):141–157. doi: 10.1113/jphysiol.1995.sp021037

Electrical and morphological factors influencing the depolarizing after-potential in rat and lizard myelinated axons.

G David 1, B Modney 1, K A Scappaticci 1, J N Barrett 1, E F Barrett 1
PMCID: PMC1156799  PMID: 8583398

Abstract

1. Intra-axonal recording and electron microscopy were applied to intramuscular myelinated axons in lizards and rats to investigate factors that influence the amplitude and time course of the depolarizing after-potential. 2. Depolarizing after-potentials in lizard axons had larger peak amplitudes and longer half-decay times than those recorded in rat axons (mean values 10 mV, 35 ms in lizard; 3 mV, 11 ms in rat). These differences were not due to differences in temperature, resting potential or action potential amplitude or duration. 3. For a given axon diameter, the myelin sheath in lizard fibres was thinner and had fewer wraps than in rat fibres. There was no significant difference in myelin periodicity. Calculations suggest that the thinner myelin sheath accounts for < 30% of the difference between depolarizing after-potential amplitudes recorded in lizard and rat axons. 4. Consistent with a passive charging model for the depolarizing after-potential, the half-time of the passive voltage transient following intra-axonal injection of current was shorter in rat than in lizard axons. 5. Aminopyridines prolonged the falling phase of the action potential and increased the amplitude of the depolarizing after-potential in both types of axon. 6. During repetitive stimulation the depolarizing after-potentials following successive action potentials exhibited little or no summation. Axonal input conductance in the interspike interval increased during the train. 7. These findings suggest that the amplitude and time course of the depolarizing after-potential are influenced not only by the passive properties of the axon and myelin sheath, but also by persisting activation of axolemmal K+ channels following action potentials.

Full text

PDF
141

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angaut-Petit D., Benoit E., Mallart A. Membrane currents in lizard motor nerve terminals and nodes of Ranvier. Pflugers Arch. 1989 Oct;415(1):81–87. doi: 10.1007/BF00373144. [DOI] [PubMed] [Google Scholar]
  2. Baker M., Bostock H., Grafe P., Martius P. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J Physiol. 1987 Feb;383:45–67. doi: 10.1113/jphysiol.1987.sp016395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett E. F., Barrett J. N. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol. 1982 Feb;323:117–144. doi: 10.1113/jphysiol.1982.sp014064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrett E. F., Morita K., Scappaticci K. A. Effects of tetraethylammonium on the depolarizing after-potential and passive properties of lizard myelinated axons. J Physiol. 1988 Aug;402:65–78. doi: 10.1113/jphysiol.1988.sp017194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blight A. R. Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath. Neuroscience. 1985 May;15(1):13–31. doi: 10.1016/0306-4522(85)90119-8. [DOI] [PubMed] [Google Scholar]
  6. Blight A. R., Someya S. Depolarizing afterpotentials in myelinated axons of mammalian spinal cord. Neuroscience. 1985 May;15(1):1–12. doi: 10.1016/0306-4522(85)90118-6. [DOI] [PubMed] [Google Scholar]
  7. Bowe C. M., Kocsis J. D., Waxman S. G. The association of the supernormal period and the depolarizing afterpotential in myelinated frog and rat sciatic nerve. Neuroscience. 1987 May;21(2):585–593. doi: 10.1016/0306-4522(87)90144-8. [DOI] [PubMed] [Google Scholar]
  8. Chiu S. Y., Ritchie J. M. Evidence for the presence of potassium channels in the internode of frog myelinated nerve fibres. J Physiol. 1982 Jan;322:485–501. doi: 10.1113/jphysiol.1982.sp014051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiu S. Y., Ritchie J. M. Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibres. J Physiol. 1981;313:415–437. doi: 10.1113/jphysiol.1981.sp013674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chiu S. Y., Ritchie J. M. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature. 1980 Mar 13;284(5752):170–171. doi: 10.1038/284170a0. [DOI] [PubMed] [Google Scholar]
  11. Chiu S. Y., Schwarz W. Sodium and potassium currents in acutely demyelinated internodes of rabbit sciatic nerves. J Physiol. 1987 Oct;391:631–649. doi: 10.1113/jphysiol.1987.sp016760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chiu S. Y., Shrager P., Ritchie J. M. Loose patch clamp recording of ionic currents in demyelinated frog nerve fibers. Brain Res. 1985 Dec 16;359(1-2):338–342. doi: 10.1016/0006-8993(85)91446-5. [DOI] [PubMed] [Google Scholar]
  13. David G., Barrett J. N., Barrett E. F. Activation of internodal potassium conductance in rat myelinated axons. J Physiol. 1993 Dec;472:177–202. doi: 10.1113/jphysiol.1993.sp019942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. David G., Barrett J. N., Barrett E. F. Evidence that action potentials activate an internodal potassium conductance in lizard myelinated axons. J Physiol. 1992 Jan;445:277–301. doi: 10.1113/jphysiol.1992.sp018924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dubois J. M. Evidence for the existence of three types of potassium channels in the frog Ranvier node membrane. J Physiol. 1981 Sep;318:297–316. doi: 10.1113/jphysiol.1981.sp013865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eng D. L., Gordon T. R., Kocsis J. D., Waxman S. G. Development of 4-AP and TEA sensitivities in mammalian myelinated nerve fibers. J Neurophysiol. 1988 Dec;60(6):2168–2179. doi: 10.1152/jn.1988.60.6.2168. [DOI] [PubMed] [Google Scholar]
  17. Friede R. L., Samorajski T. Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J Comp Neurol. 1967 Jul;130(3):223–231. doi: 10.1002/cne.901300304. [DOI] [PubMed] [Google Scholar]
  18. Grissmer S. Properties of potassium and sodium channels in frog internode. J Physiol. 1986 Dec;381:119–134. doi: 10.1113/jphysiol.1986.sp016317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jonas P., Bräu M. E., Hermsteiner M., Vogel W. Single-channel recording in myelinated nerve fibers reveals one type of Na channel but different K channels. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7238–7242. doi: 10.1073/pnas.86.18.7238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jonas P., Koh D. S., Kampe K., Hermsteiner M., Vogel W. ATP-sensitive and Ca-activated K channels in vertebrate axons: novel links between metabolism and excitability. Pflugers Arch. 1991 Mar;418(1-2):68–73. doi: 10.1007/BF00370453. [DOI] [PubMed] [Google Scholar]
  21. Kapoor R., Smith K. J., Felts P. A., Davies M. Internodal potassium currents can generate ectopic impulses in mammalian myelinated axons. Brain Res. 1993 May 14;611(1):165–169. doi: 10.1016/0006-8993(93)91790-y. [DOI] [PubMed] [Google Scholar]
  22. Kocsis J. D., Waxman S. G. Action potential electrogenesis in mammalian central axons. Adv Neurol. 1981;31:299–312. [PubMed] [Google Scholar]
  23. Koh D. S., Jonas P., Bräu M. E., Vogel W. A TEA-insensitive flickering potassium channel active around the resting potential in myelinated nerve. J Membr Biol. 1992 Nov;130(2):149–162. doi: 10.1007/BF00231893. [DOI] [PubMed] [Google Scholar]
  24. Koh D. S., Jonas P., Vogel W. Na(+)-activated K+ channels localized in the nodal region of myelinated axons of Xenopus. J Physiol. 1994 Sep 1;479(Pt 2):183–197. doi: 10.1113/jphysiol.1994.sp020287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morita K., Barrett E. F. Calcium-dependent depolarizations originating in lizard motor nerve terminals. J Neurosci. 1989 Sep;9(9):3359–3369. doi: 10.1523/JNEUROSCI.09-09-03359.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morita K., David G., Barrett J. N., Barrett E. F. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals. J Neurophysiol. 1993 Nov;70(5):1874–1884. doi: 10.1152/jn.1993.70.5.1874. [DOI] [PubMed] [Google Scholar]
  27. Quick D. C., Kennedy W. R., Donaldson L. Dimensions of myelinated nerve fibers near the motor and sensory terminals in cat tenuissimus muscles. Neuroscience. 1979;4(8):1089–1096. doi: 10.1016/0306-4522(79)90190-8. [DOI] [PubMed] [Google Scholar]
  28. Röper J., Schwarz J. R. Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. J Physiol. 1989 Sep;416:93–110. doi: 10.1113/jphysiol.1989.sp017751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Safronov B. V., Kampe K., Vogel W. Single voltage-dependent potassium channels in rat peripheral nerve membrane. J Physiol. 1993 Jan;460:675–691. doi: 10.1113/jphysiol.1993.sp019493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wilson G. F., Chiu S. Y. Ion channels in axon and Schwann cell membranes at paranodes of mammalian myelinated fibers studied with patch clamp. J Neurosci. 1990 Oct;10(10):3263–3274. doi: 10.1523/JNEUROSCI.10-10-03263.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu J. V., Rubinstein C. T., Shrager P. Single channel characterization of multiple types of potassium channels in demyelinated Xenopus axons. J Neurosci. 1993 Dec;13(12):5153–5163. doi: 10.1523/JNEUROSCI.13-12-05153.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES