Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Dec 15;489(Pt 3):813–823. doi: 10.1113/jphysiol.1995.sp021094

Potentiation of neurotransmitter release by activation of presynaptic glutamate receptors at developing neuromuscular synapses of Xenopus.

W M Fu 1, J C Liou 1, Y H Lee 1, H C Liou 1
PMCID: PMC1156850  PMID: 8788945

Abstract

1. Glutamate receptors play important roles in synaptic plasticity and neural development. Here we report that, at the developing neuromuscular synapses in Xenopus cultures, the activation of presynaptic glutamate receptors at motor nerve terminals potentiates spontaneous acetylcholine (ACh) release. 2. Co-cultures of spinal neurons and myotomal muscle cells were prepared from 1-day-old Xenopus embryos. Spontaneous synaptic currents (SSCs) were recorded from innervated myocytes using whole-cell recording. Bath application of glutamate (10 microM) markedly increased the frequency of SSCs, and the action of glutamate was reversible. 3. Pretreatment with 0.3 microM tetrodotoxin, which blocks Na+ channels and the conduction of action potentials, only slightly inhibited the potentiating action of glutamate on SSCs. Furthermore, the enhancement of ACh secretion was much more prominent when glutamate was applied locally to the synaptic region. 4. Three types of glutamate receptor agonists, kainate, quisqualate, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and NMDA (N-methyl-D-aspartate), were effective in inducing the potentiating effect. The ranking order was: glutamate > kainate > NMDA > AMPA > quisqualate. Glycine potentiated the effects induced by NMDA. Metabotropic receptors were not involved in the potentiating action of glutamate. 5. The potentiating effect of glutamate depended on the influx of Ca2+ through both L-type Ca2+ channels and NMDA-gated channels. 6. Since glutamate is known to be co-released with ACh at some cholinergic nerve terminals, the released glutamate may serve as a positive feedback regulation of ACh secretion at developing neuromuscular junctions via its action on presynaptic glutamate receptors.

Full text

PDF
813

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascher P., Nowak L. Quisqualate- and kainate-activated channels in mouse central neurones in culture. J Physiol. 1988 May;399:227–245. doi: 10.1113/jphysiol.1988.sp017077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Augustine G. J., Charlton M. P., Smith S. J. Calcium action in synaptic transmitter release. Annu Rev Neurosci. 1987;10:633–693. doi: 10.1146/annurev.ne.10.030187.003221. [DOI] [PubMed] [Google Scholar]
  3. Buchanan J. T., Brodin L., Dale N., Grillner S. Reticulospinal neurones activate excitatory amino acid receptors. Brain Res. 1987 Apr 7;408(1-2):321–325. doi: 10.1016/0006-8993(87)90397-0. [DOI] [PubMed] [Google Scholar]
  4. Bustos G., Abarca J., Forray M. I., Gysling K., Bradberry C. W., Roth R. H. Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies. Brain Res. 1992 Jul 10;585(1-2):105–115. doi: 10.1016/0006-8993(92)91195-k. [DOI] [PubMed] [Google Scholar]
  5. Chow I., Poo M. M. Release of acetylcholine from embryonic neurons upon contact with muscle cell. J Neurosci. 1985 Apr;5(4):1076–1082. doi: 10.1523/JNEUROSCI.05-04-01076.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Constantine-Paton M., Cline H. T., Debski E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci. 1990;13:129–154. doi: 10.1146/annurev.ne.13.030190.001021. [DOI] [PubMed] [Google Scholar]
  7. Dale N., Roberts A. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. J Physiol. 1985 Jun;363:35–59. doi: 10.1113/jphysiol.1985.sp015694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Decker E. R., Dani J. A. Calcium permeability of the nicotinic acetylcholine receptor: the single-channel calcium influx is significant. J Neurosci. 1990 Oct;10(10):3413–3420. doi: 10.1523/JNEUROSCI.10-10-03413.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans R. H., Francis A. A., Jones A. W., Smith D. A., Watkins J. C. The effects of a series of omega-phosphonic alpha-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations. Br J Pharmacol. 1982 Jan;75(1):65–75. doi: 10.1111/j.1476-5381.1982.tb08758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evers J., Laser M., Sun Y. A., Xie Z. P., Poo M. M. Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J Neurosci. 1989 May;9(5):1523–1539. doi: 10.1523/JNEUROSCI.09-05-01523.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forsythe I. D., Clements J. D. Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J Physiol. 1990 Oct;429:1–16. doi: 10.1113/jphysiol.1990.sp018240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Foster A. C., Fagg G. E. Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res. 1984 May;319(2):103–164. doi: 10.1016/0165-0173(84)90020-1. [DOI] [PubMed] [Google Scholar]
  13. Fu W. M., Huang F. L. L-type Ca2+ channel is involved in the regulation of spontaneous transmitter release at developing neuromuscular synapses. Neuroscience. 1994 Jan;58(1):131–140. doi: 10.1016/0306-4522(94)90160-0. [DOI] [PubMed] [Google Scholar]
  14. Fu W. M., Poo M. M. ATP potentiates spontaneous transmitter release at developing neuromuscular synapses. Neuron. 1991 May;6(5):837–843. doi: 10.1016/0896-6273(91)90179-4. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  17. Herrero I., Miras-Portugal M. T., Sánchez-Prieto J. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature. 1992 Nov 12;360(6400):163–166. doi: 10.1038/360163a0. [DOI] [PubMed] [Google Scholar]
  18. Honoré T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., Nielsen F. E. Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science. 1988 Aug 5;241(4866):701–703. doi: 10.1126/science.2899909. [DOI] [PubMed] [Google Scholar]
  19. Israël M., Lesbats B., Bruner J. Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism. Neurochem Int. 1993 Jan;22(1):53–58. doi: 10.1016/0197-0186(93)90068-g. [DOI] [PubMed] [Google Scholar]
  20. Kidokoro Y., Saito M. Early cross-striation formation in twitching Xenopus myocytes in culture. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1978–1982. doi: 10.1073/pnas.85.6.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lo Y. J., Poo M. M. Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. Science. 1991 Nov 15;254(5034):1019–1022. doi: 10.1126/science.1658939. [DOI] [PubMed] [Google Scholar]
  22. Lo Y. J., Poo M. M. Heterosynaptic suppression of developing neuromuscular synapses in culture. J Neurosci. 1994 Aug;14(8):4684–4693. doi: 10.1523/JNEUROSCI.14-08-04684.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Markram H., Segal M. Acetylcholine potentiates responses to N-methyl-D-aspartate in the rat hippocampus. Neurosci Lett. 1990 May 18;113(1):62–65. doi: 10.1016/0304-3940(90)90495-u. [DOI] [PubMed] [Google Scholar]
  24. Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17;309(5965):261–263. doi: 10.1038/309261a0. [DOI] [PubMed] [Google Scholar]
  25. Meister B., Arvidsson U., Zhang X., Jacobsson G., Villar M. J., Hökfelt T. Glutamate transporter mRNA and glutamate-like immunoreactivity in spinal motoneurones. Neuroreport. 1993 Dec 13;5(3):337–340. doi: 10.1097/00001756-199312000-00040. [DOI] [PubMed] [Google Scholar]
  26. Monaghan D. T., Bridges R. J., Cotman C. W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402. doi: 10.1146/annurev.pa.29.040189.002053. [DOI] [PubMed] [Google Scholar]
  27. Mulle C., Choquet D., Korn H., Changeux J. P. Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation. Neuron. 1992 Jan;8(1):135–143. doi: 10.1016/0896-6273(92)90115-t. [DOI] [PubMed] [Google Scholar]
  28. Schoepp D., Bockaert J., Sladeczek F. Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci. 1990 Dec;11(12):508–515. doi: 10.1016/0165-6147(90)90052-a. [DOI] [PubMed] [Google Scholar]
  29. Segal M. Acetylcholine enhances NMDA-evoked calcium rise in hippocampal neurons. Brain Res. 1992 Jul 31;587(1):83–87. doi: 10.1016/0006-8993(92)91430-m. [DOI] [PubMed] [Google Scholar]
  30. Shatz C. J. Impulse activity and the patterning of connections during CNS development. Neuron. 1990 Dec;5(6):745–756. doi: 10.1016/0896-6273(90)90333-b. [DOI] [PubMed] [Google Scholar]
  31. Skatchkov S., Brösamle C., Vyklický L., Kuffler D. P., Orkand R. K. NMDA receptors on adult frog spinal motoneurons in culture. Neurosci Lett. 1994 Aug 1;176(2):251–254. doi: 10.1016/0304-3940(94)90094-9. [DOI] [PubMed] [Google Scholar]
  32. Smirnova T., Laroche S., Errington M. L., Hicks A. A., Bliss T. V., Mallet J. Transsynaptic expression of a presynaptic glutamate receptor during hippocampal long-term potentiation. Science. 1993 Oct 15;262(5132):433–436. doi: 10.1126/science.8105538. [DOI] [PubMed] [Google Scholar]
  33. Smirnova T., Stinnakre J., Mallet J. Characterization of a presynaptic glutamate receptor. Science. 1993 Oct 15;262(5132):430–433. doi: 10.1126/science.8105537. [DOI] [PubMed] [Google Scholar]
  34. Ulus I. H., Buyukuysal R. L., Wurtman R. J. N-methyl-D-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline. J Pharmacol Exp Ther. 1992 Jun;261(3):1122–1128. [PubMed] [Google Scholar]
  35. Vernino S., Amador M., Luetje C. W., Patrick J., Dani J. A. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron. 1992 Jan;8(1):127–134. doi: 10.1016/0896-6273(92)90114-s. [DOI] [PubMed] [Google Scholar]
  36. Vyas S., Bradford H. F. Co-release of acetylcholine, glutamate and taurine from synaptosomes of Torpedo electric organ. Neurosci Lett. 1987 Nov 10;82(1):58–64. doi: 10.1016/0304-3940(87)90171-6. [DOI] [PubMed] [Google Scholar]
  37. Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES