Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jan 15;482(Pt 2):363–372. doi: 10.1113/jphysiol.1995.sp020523

Baclofen enhancement of acetylcholine release from amacrine cells in the rabbit retina by reduction of glycinergic inhibition.

M J Neal 1, J R Cunningham 1
PMCID: PMC1157734  PMID: 7714827

Abstract

1. The mechanism by which the GABAB-receptor agonist, baclofen, enhances the light-evoked release of [3H]acetylcholine (ACh) from cholinergic amacrine cells was studied using an eye-cup preparation in anaesthetized rabbits and isolated retinas. 2. When applied locally to the rabbit retina, baclofen increased the release of ACh evoked by a flickering light (3 Hz) by over 40%. 3. In isolated retinas, baclofen strikingly inhibited the K(+)-evoked release of glycine but had no effect on GABA release. 4. In the rabbit eye cup, strychnine enhanced the light-evoked release of ACh to a similar degree to that produced by baclofen. The effects of baclofen and strychnine on the light-evoked release of ACh were not additive. In contrast, bicuculline did not affect the enhancing action of baclofen on the light-evoked release of ACh. 5. In order to see whether the glycinergic amacrine cells might be stimulated by ACh, isolated rat and rabbit retinas were exposed to muscarine. This cholinergic agonist potentiated the K(+)-evoked release of glycine by 54%. 6. We suggest that baclofen enhances the light-evoked release of ACh from amacrine cells by inhibiting glycine release from glycinergic amacrine cells which are stimulated by ACh and form an inhibitory feedback loop to the cholinergic neurones.

Full text

PDF
363

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai S. H., Slaughter M. M. Effects of baclofen on transient neurons in the mudpuppy retina: electrogenic and network actions. J Neurophysiol. 1989 Feb;61(2):382–390. doi: 10.1152/jn.1989.61.2.382. [DOI] [PubMed] [Google Scholar]
  2. Bindokas V. P., Ishida A. T. (-)-baclofen and gamma-aminobutyric acid inhibit calcium currents in isolated retinal ganglion cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10759–10763. doi: 10.1073/pnas.88.23.10759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonanno G., Raiteri M. Multiple GABAB receptors. Trends Pharmacol Sci. 1993 Jul;14(7):259–261. doi: 10.1016/0165-6147(93)90124-3. [DOI] [PubMed] [Google Scholar]
  4. Boos R., Schneider H., Wässle H. Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina. J Neurosci. 1993 Jul;13(7):2874–2888. doi: 10.1523/JNEUROSCI.13-07-02874.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowery N. G. GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol. 1993;33:109–147. doi: 10.1146/annurev.pa.33.040193.000545. [DOI] [PubMed] [Google Scholar]
  6. Bruun A., Ehinger B. Uptake of the putative neurotransmitter, glycine, into the rabbit retina. Invest Ophthalmol. 1972 Apr;11(4):191–198. [PubMed] [Google Scholar]
  7. Cunningham J. R., Dawson C., Neal M. J. Evidence for a cholinergic inhibitory feed-back mechanism in the rabbit retina. J Physiol. 1983 Jul;340:455–468. doi: 10.1113/jphysiol.1983.sp014773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cunningham J. R., Neal M. J. Effect of excitatory amino acids and analogues on [3H]acetylcholine release from amacrine cells of the rabbit retina. J Physiol. 1985 Sep;366:47–62. doi: 10.1113/jphysiol.1985.sp015784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cunningham J. R., Neal M. J. Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina. J Physiol. 1983 Mar;336:563–577. doi: 10.1113/jphysiol.1983.sp014598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dacheux R. F., Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986 Feb;6(2):331–345. doi: 10.1523/JNEUROSCI.06-02-00331.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ehinger B., Lindberg B. Light-evoked release of glycine from the retina. Nature. 1974 Oct 25;251(5477):727–728. doi: 10.1038/251727a0. [DOI] [PubMed] [Google Scholar]
  12. Famiglietti E. V., Jr 'Starburst' amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res. 1983 Feb 14;261(1):138–144. doi: 10.1016/0006-8993(83)91293-3. [DOI] [PubMed] [Google Scholar]
  13. Famiglietti E. V., Jr On and off pathways through amacrine cells in mammalian retina: the synaptic connections of "starburst" amacrine cells. Vision Res. 1983;23(11):1265–1279. doi: 10.1016/0042-6989(83)90102-5. [DOI] [PubMed] [Google Scholar]
  14. Famiglietti E. V. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J Comp Neurol. 1991 Jul 1;309(1):40–70. doi: 10.1002/cne.903090105. [DOI] [PubMed] [Google Scholar]
  15. Friedman D. L., Redburn D. A. Evidence for functionally distinct subclasses of gamma-aminobutyric acid receptors in rabbit retina. J Neurochem. 1990 Oct;55(4):1189–1199. doi: 10.1111/j.1471-4159.1990.tb03124.x. [DOI] [PubMed] [Google Scholar]
  16. Grünert U., Wässle H. Immunocytochemical localization of glycine receptors in the mammalian retina. J Comp Neurol. 1993 Sep 22;335(4):523–537. doi: 10.1002/cne.903350405. [DOI] [PubMed] [Google Scholar]
  17. Ikeda H., Hankins M. W., Kay C. D. Actions of baclofen and phaclofen upon ON- and OFF-ganglion cells in the cat retina. Eur J Pharmacol. 1990 Nov 6;190(1-2):1–9. doi: 10.1016/0014-2999(90)94106-8. [DOI] [PubMed] [Google Scholar]
  18. Jardon B., Bonaventure N., Scherrer E. Possible involvement of cholinergic and glycinergic amacrine cells in the inhibition exerted by the ON retinal channel on the OFF retinal channel. Eur J Pharmacol. 1992 Jan 14;210(2):201–207. doi: 10.1016/0014-2999(92)90672-q. [DOI] [PubMed] [Google Scholar]
  19. Karschin A., Wässle H. Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. J Neurophysiol. 1990 Apr;63(4):860–876. doi: 10.1152/jn.1990.63.4.860. [DOI] [PubMed] [Google Scholar]
  20. Linn D. M., Massey S. C. GABA inhibits ACh release from the rabbit retina: a direct effect or feedback to bipolar cells? Vis Neurosci. 1992 Feb;8(2):97–106. doi: 10.1017/s0952523800009263. [DOI] [PubMed] [Google Scholar]
  21. Maguire G., Maple B., Lukasiewicz P., Werblin F. Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10144–10147. doi: 10.1073/pnas.86.24.10144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Masland R. H., Mills J. W. Autoradiographic identification of acetylcholine in the rabbit retina. J Cell Biol. 1979 Oct;83(1):159–178. doi: 10.1083/jcb.83.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Massey S. C., Redburn D. A. A tonic gamma-aminobutyric acid-mediated inhibition of cholinergic amacrine cells in rabbit retina. J Neurosci. 1982 Nov;2(11):1633–1643. doi: 10.1523/JNEUROSCI.02-11-01633.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Massey S. C., Redburn D. A. Light evoked release of acetylcholine in response to a single flash: cholinergic amacrine cells receive ON and OFF input. Brain Res. 1985 Mar 4;328(2):374–377. doi: 10.1016/0006-8993(85)91052-2. [DOI] [PubMed] [Google Scholar]
  25. Miller R. F., Frumkes T. E., Slaughter M., Dacheux R. F. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. I. Receptors, horizontal cells, bipolars, and G-cells. J Neurophysiol. 1981 Apr;45(4):743–763. doi: 10.1152/jn.1981.45.4.743. [DOI] [PubMed] [Google Scholar]
  26. Neal M. J., Cunningham J. R., Hutson P. H., Semark J. E. Calcium dependent release of acetylcholine and gamma-aminobutyric acid from the rabbit retina. Neurochem Int. 1992 Jan;20(1):43–53. doi: 10.1016/0197-0186(92)90124-a. [DOI] [PubMed] [Google Scholar]
  27. Neal M. J., Cunningham J. R., James T. A., Joseph M., Collins J. F. The effect of 2-amino-4-phosphonobutyrate (APB) on acetylcholine release from the rabbit retina: evidence for on-channel input to cholinergic amacrine cells. Neurosci Lett. 1981 Nov 4;26(3):301–305. doi: 10.1016/0304-3940(81)90149-x. [DOI] [PubMed] [Google Scholar]
  28. Neal M. J., Cunningham J. R. L-homocysteic acid--a possible bipolar cell transmitter in the rabbit retina. Neurosci Lett. 1989 Jul 17;102(1):114–119. doi: 10.1016/0304-3940(89)90317-0. [DOI] [PubMed] [Google Scholar]
  29. Neal M. J., Shah M. A. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina. Br J Pharmacol. 1989 Sep;98(1):105–112. doi: 10.1111/j.1476-5381.1989.tb16869.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Neal M. J. The effect of convulsant drugs on coaxially stimulated guinea-pig ileum. Br J Pharmacol Chemother. 1967 Sep;31(1):132–137. doi: 10.1111/j.1476-5381.1967.tb01983.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pourcho R. G., Owczarzak M. T. Glycine receptor immunoreactivity is localized at amacrine synapses in cat retina. Vis Neurosci. 1991 Dec;7(6):611–618. doi: 10.1017/s0952523800010397. [DOI] [PubMed] [Google Scholar]
  32. Simmonds M. A. Classification of some GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur J Pharmacol. 1982 Jun 4;80(4):347–358. doi: 10.1016/0014-2999(82)90080-2. [DOI] [PubMed] [Google Scholar]
  33. Slaughter M. M., Bai S. H. Differential effects of baclofen on sustained and transient cells in the mudpuppy retina. J Neurophysiol. 1989 Feb;61(2):374–381. doi: 10.1152/jn.1989.61.2.374. [DOI] [PubMed] [Google Scholar]
  34. Slaughter M. M., Miller R. F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981 Jan 9;211(4478):182–185. doi: 10.1126/science.6255566. [DOI] [PubMed] [Google Scholar]
  35. Slaughter M. M., Pan Z. H. The physiology of GABAB receptors in the vertebrate retina. Prog Brain Res. 1992;90:47–60. doi: 10.1016/s0079-6123(08)63608-0. [DOI] [PubMed] [Google Scholar]
  36. Vaney D. I., Young H. M., Gynther I. C. The rod circuit in the rabbit retina. Vis Neurosci. 1991 Jul-Aug;7(1-2):141–154. doi: 10.1017/s0952523800011019. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES