Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jan 15;482(Pt 2):421–434. doi: 10.1113/jphysiol.1995.sp020529

Involvement of endothelin-1 in hypoxic pulmonary vasoconstriction in the lamb.

Y Wang 1, Y Coe 1, O Toyoda 1, F Coceani 1
PMCID: PMC1157740  PMID: 7714833

Abstract

1. Using isolated pulmonary resistance vessels from mature fetal lamb and chronically instrumented lambs (8-17 days old), we have examined whether hypoxic pulmonary vasoconstriction is sustained by activation of a constrictor mechanism or suppression of a dilator mechanism. 2. Hypoxia contracted both arteries and veins in vitro, and the contraction was greater with the former. After removing the endothelium, arteries responded faster to hypoxia, but the magnitude of the response remained unchanged. 3. Hypoxic arteries, unlike normally oxygenated arteries, did not contract with either indomethacin (2.8 microM) or N omega-nitro-L-arginine methyl ester (L-NAME, 100 microM). The same vessels relaxed with sodium nitroprusside (SNP, 0.001-10 microM) but not with bradykinin (0.1-100 nM). 4. Endothelin-1 (ET-1, 0.01-10 nM) contracted isolated arteries and veins under normoxic and hypoxic conditions. In both vessels, the contraction was fast in onset and subsidence, and was inhibited by the ETA receptor antagonist BQ123 (1 microM). The ET-1 precursor, big ET-1 (100 nM), also contracted arteries and veins, but compared with ET-1 its action was slower in development. Big ET-1 contraction, unlike ET-1 contraction, was curtailed by the inhibitor of the ET-1-converting enzyme, phosphoramidon (50 microM). 5. ET-1 (0.1-10 nM) had no effect on isolated arteries precontracted with a thromboxane A2 (TXA2) analogue (ONO-11113) and treated with BQ123 (10 microM). Under the same conditions, ET-1 relaxed the veins. Accordingly, in the absence of BQ123 treatment, the selective ETB receptor agonist IRL-1620 (0.1-100 nM) relaxed the contracted veins but not the arteries. 6. BQ123 (10 microM) inhibited the constriction of isolated arteries and veins to hypoxia. Likewise, in the conscious lamb a bolus of BQ123 (0.4 mg kg-1, injected into the pulmonary artery) curtailed the rise in pulmonary vascular resistance (Rpa) brought about by alveolar hypoxia without changing significantly systemic vascular resistance (Rao). Under normoxia, Rpa was insignificantly affected by BQ123. 7. The results indicate that pulmonary resistance arteries are more susceptible to hypoxia than the veins, and that hypoxic vasoconstriction does not require an intact endothelium to occur. Hypoxic tone is ascribed primarily to intramural generation of ET-1, while removal of the tonic action of a relaxant may only have an accessory role in the response.

Full text

PDF
421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley L. M., Czaja J. F., Goldstein R. E. Circulatory effects of endothelin in newborn piglets. Am J Physiol. 1990 Nov;259(5 Pt 2):H1613–H1617. doi: 10.1152/ajpheart.1990.259.5.H1613. [DOI] [PubMed] [Google Scholar]
  2. Cassin S., Kristova V., Davis T., Kadowitz P., Gause G. Tone-dependent responses to endothelin in the isolated perfused fetal sheep pulmonary circulation in situ. J Appl Physiol (1985) 1991 Mar;70(3):1228–1234. doi: 10.1152/jappl.1991.70.3.1228. [DOI] [PubMed] [Google Scholar]
  3. Chatfield B. A., McMurtry I. F., Hall S. L., Abman S. H. Hemodynamic effects of endothelin-1 on ovine fetal pulmonary circulation. Am J Physiol. 1991 Jul;261(1 Pt 2):R182–R187. doi: 10.1152/ajpregu.1991.261.1.R182. [DOI] [PubMed] [Google Scholar]
  4. Coceani F., Kelsey L. Endothelin-1 release from lamb ductus arteriosus: relevance to postnatal closure of the vessel. Can J Physiol Pharmacol. 1991 Feb;69(2):218–221. doi: 10.1139/y91-033. [DOI] [PubMed] [Google Scholar]
  5. Coceani F., Olley P. M. Eicosanoids in the fetal and transitional pulmonary circulation. Chest. 1988 Mar;93(3 Suppl):112S–117S. doi: 10.1378/chest.93.3_supplement.112s. [DOI] [PubMed] [Google Scholar]
  6. Coe J. Y., Loundes D., Coceani F., Olley P. M. The circulatory effects of nifedipine in the conscious newborn lamb. Pediatr Res. 1986 Jan;20(1):1–4. doi: 10.1203/00006450-198601000-00001. [DOI] [PubMed] [Google Scholar]
  7. Davenport A. P., Maguire J. J. Is endothelin-induced vasoconstriction mediated only by ETA receptors in humans? Trends Pharmacol Sci. 1994 Jan;15(1):9–11. doi: 10.1016/0165-6147(94)90120-1. [DOI] [PubMed] [Google Scholar]
  8. Demiryurek A. T., Wadsworth R. M., Kane K. A. Effects of hypoxia on isolated intrapulmonary arteries from the sheep. Pulm Pharmacol. 1991;4(3):158–164. doi: 10.1016/0952-0600(91)90006-o. [DOI] [PubMed] [Google Scholar]
  9. Demiryurek A. T., Wadsworth R. M., Kane K. A., Peacock A. J. The role of endothelium in hypoxic constriction of human pulmonary artery rings. Am Rev Respir Dis. 1993 Feb;147(2):283–290. doi: 10.1164/ajrccm/147.2.283. [DOI] [PubMed] [Google Scholar]
  10. Douglas S. A., Vickery-Clark L. M., Ohlstein E. H. Endothelin-1 does not mediate hypoxic vasoconstriction in canine isolated blood vessels: effect of BQ-123. Br J Pharmacol. 1993 Feb;108(2):418–421. doi: 10.1111/j.1476-5381.1993.tb12819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fike C. D., Kaplowitz M. R. Pulmonary venous pressure increases during alveolar hypoxia in isolated lungs of newborn pigs. J Appl Physiol (1985) 1992 Aug;73(2):552–556. doi: 10.1152/jappl.1992.73.2.552. [DOI] [PubMed] [Google Scholar]
  12. Giaid A., Yanagisawa M., Langleben D., Michel R. P., Levy R., Shennib H., Kimura S., Masaki T., Duguid W. P., Stewart D. J. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med. 1993 Jun 17;328(24):1732–1739. doi: 10.1056/NEJM199306173282402. [DOI] [PubMed] [Google Scholar]
  13. Holden W. E., McCall E. Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp Lung Res. 1984;7(2):101–112. doi: 10.3109/01902148409069671. [DOI] [PubMed] [Google Scholar]
  14. Johns R. A., Linden J. M., Peach M. J. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res. 1989 Dec;65(6):1508–1515. doi: 10.1161/01.res.65.6.1508. [DOI] [PubMed] [Google Scholar]
  15. Lock J. E., Hamilton F., Luide H., Coceani F., Olley P. M. Direct pulmonary vascular responses in the conscious newborn lamb. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jan;48(1):188–196. doi: 10.1152/jappl.1980.48.1.188. [DOI] [PubMed] [Google Scholar]
  16. Madden J. A., Dawson C. A., Harder D. R. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol (1985) 1985 Jul;59(1):113–118. doi: 10.1152/jappl.1985.59.1.113. [DOI] [PubMed] [Google Scholar]
  17. Matsumura Y., Ikegawa R., Tsukahara Y., Takaoka M., Morimoto S. Conversion of big endothelin-1 to endothelin-1 by two-types of metalloproteinases of cultured porcine vascular smooth muscle cells. Biochem Biophys Res Commun. 1991 Aug 15;178(3):899–905. doi: 10.1016/0006-291x(91)90976-e. [DOI] [PubMed] [Google Scholar]
  18. Miller R. C., Pelton J. T., Huggins J. P. Endothelins--from receptors to medicine. Trends Pharmacol Sci. 1993 Feb;14(2):54–60. doi: 10.1016/0165-6147(93)90031-e. [DOI] [PubMed] [Google Scholar]
  19. Moncada S., Herman A. G., Higgs E. A., Vane J. R. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res. 1977 Sep;11(3):323–344. doi: 10.1016/0049-3848(77)90185-2. [DOI] [PubMed] [Google Scholar]
  20. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  21. Murray T. R., Chen L., Marshall B. E., Macarak E. J. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am J Respir Cell Mol Biol. 1990 Nov;3(5):457–465. doi: 10.1165/ajrcmb/3.5.457. [DOI] [PubMed] [Google Scholar]
  22. Ogawa Y., Kawabe J., Onodera S., Tobise K., Morita K., Harada T., Hirayama T., Takeda A. Role of endothelium in biphasic hypoxic response of the isolated pulmonary artery in the rat. Jpn Circ J. 1993 Mar;57(3):228–236. doi: 10.1253/jcj.57.228. [DOI] [PubMed] [Google Scholar]
  23. Omar H. A., Wolin M. S. Endothelium-dependent and independent cGMP mechanisms appear to mediate O2 responses in calf pulmonary resistance arteries. Am J Physiol. 1992 May;262(5 Pt 1):L560–L565. doi: 10.1152/ajplung.1992.262.5.L560. [DOI] [PubMed] [Google Scholar]
  24. Perreault T., De Marte J. Endothelin-1 has a dilator effect on neonatal pig pulmonary vasculature. J Cardiovasc Pharmacol. 1991 Jul;18(1):43–50. doi: 10.1097/00005344-199107000-00007. [DOI] [PubMed] [Google Scholar]
  25. Post J. M., Hume J. R., Archer S. L., Weir E. K. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 1992 Apr;262(4 Pt 1):C882–C890. doi: 10.1152/ajpcell.1992.262.4.C882. [DOI] [PubMed] [Google Scholar]
  26. Raj J. U., Chen P. Micropuncture measurement of microvascular pressures in isolated lamb lungs during hypoxia. Circ Res. 1986 Oct;59(4):398–404. doi: 10.1161/01.res.59.4.398. [DOI] [PubMed] [Google Scholar]
  27. Rodman D. M., Yamaguchi T., Hasunuma K., O'Brien R. F., McMurtry I. F. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. Am J Physiol. 1990 Apr;258(4 Pt 1):L207–L214. doi: 10.1152/ajplung.1990.258.4.L207. [DOI] [PubMed] [Google Scholar]
  28. Shirai M., Sada K., Ninomiya I. Effects of regional alveolar hypoxia and hypercapnia on small pulmonary vessels in cats. J Appl Physiol (1985) 1986 Aug;61(2):440–448. doi: 10.1152/jappl.1986.61.2.440. [DOI] [PubMed] [Google Scholar]
  29. Sidi D., Kuipers J. R., Heymann M. A., Rudolph A. M. Recovery of cardiovascular function in newborn lambs after thoracotomy. Pediatr Res. 1982 Sep;16(9):705–710. doi: 10.1203/00006450-198209000-00001. [DOI] [PubMed] [Google Scholar]
  30. Takai M., Umemura I., Yamasaki K., Watakabe T., Fujitani Y., Oda K., Urade Y., Inui T., Yamamura T., Okada T. A potent and specific agonist, Suc-[Glu9,Ala11,15]-endothelin-1(8-21), IRL 1620, for the ETB receptor. Biochem Biophys Res Commun. 1992 Apr 30;184(2):953–959. doi: 10.1016/0006-291x(92)90683-c. [DOI] [PubMed] [Google Scholar]
  31. Vane J. R., Anggård E. E., Botting R. M. Regulatory functions of the vascular endothelium. N Engl J Med. 1990 Jul 5;323(1):27–36. doi: 10.1056/NEJM199007053230106. [DOI] [PubMed] [Google Scholar]
  32. Wang Y., Coceani F. EDRF in pulmonary resistance vessels from fetal lamb: stimulation by oxygen and bradykinin. Am J Physiol. 1994 Mar;266(3 Pt 2):H936–H943. doi: 10.1152/ajpheart.1994.266.3.H936. [DOI] [PubMed] [Google Scholar]
  33. Wang Y., Coceani F. Isolated pulmonary resistance vessels from fetal lambs. Contractile behavior and responses to indomethacin and endothelin-1. Circ Res. 1992 Aug;71(2):320–330. doi: 10.1161/01.res.71.2.320. [DOI] [PubMed] [Google Scholar]
  34. Wang Y., Mercer-Connolly A., Lines L., Toyoda O., Coceani F. Endothelium-denuded pulmonary resistance arteries from the fetal lamb: preparation and response to vasoactive agents. J Pharmacol Toxicol Methods. 1994 Oct;32(2):85–91. doi: 10.1016/1056-8719(94)90058-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES