Abstract
1. The activity of fourteen tectoreticulospinal neurones (TRSNs) was recorded intraaxonally in the caudal pons of alert cats during orienting movements towards visual stimuli. TRSN spikes were used to compute the spike-triggered average (STA) of rectified EMG of dorsal neck muscles. 2. Eight TRSNs for which 400-2532 spikes were available were analysed with the STA technique. When the STA was computed from all spikes, significant post-spike facilitation (PSF) was obtained for six of eighteen cell-muscle pairs investigated (5 TRSNs). The mean relative amplitude of PSFs was 7.4% (S.D. 3.7). The onset latencies ranged from 1.1 to 5.0 ms and mean duration was 11.4 +/- 3.1 ms (mean +/- S.D.). 3. Interspike interval distributions were unimodal, with modes between 2.7 and 12.7 ms. Spike trains of TRSNs that produced significant PSFs contained 5-13% of the interspike intervals < or = 5 ms and 22-37% of the intervals < or = 10 ms. To evaluate the contribution of short intervals to PSF, STAs were computed separately for spikes preceded by 'short' (< or = 5 or < or = 10 ms) and 'long' (> 5 or > 10 ms) intervals. 4. When computed from spikes preceded by 'long' intervals, PSF amplitudes were small (mean +/- S.D., 5.3 +/- 2.7%) and onset latencies measured by cusum ranged between 2.4 and 5.4 ms. This is longer than the estimated minimal latency of monosynaptic facilitatory effect on neck EMG (1.9-2.1 ms). 5. Relative amplitudes of PSF obtained with spikes preceded by 'short' intervals were much larger (mean +/- S.D., 14.8 +/- 7.4%), but cusums indicated negative latencies for four of six PSFs. The unrealistically short onset latencies could be accounted for by the summation of facilitation from the trigger spike with that of the preceding spikes. In four of five TRSNs a large increase of PSF amplitude (from 3.2 to 7.2 times the amplitude obtained from 'long' intervals) suggests the presence of frequency-dependent potentiation of synaptic transmission. 6. This study unequivocally demonstrates that some TRSNs produce significant post-spike facilitation of neck motoneurones. This facilitation could be mediated by monosynaptic tectomotoneuronal connections although a contribution by disynaptic connections cannot be definitively ruled out. The high instantaneous firing rates of TRSNs produce a potentiation of the otherwise weak facilitatory action of TRSNs that presumably contributes to a rapid recruitment of motoneurones during initiation of head orienting movements.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alstermark B., Pinter M. J., Sasaki S. Tectal and tegmental excitation in dorsal neck motoneurones of the cat. J Physiol. 1992 Aug;454:517–532. doi: 10.1113/jphysiol.1992.sp019277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson M. E., Yoshida M., Wilson V. J. Influence of superior colliculus on cat neck motoneurons. J Neurophysiol. 1971 Sep;34(5):898–907. doi: 10.1152/jn.1971.34.5.898. [DOI] [PubMed] [Google Scholar]
- Cheney P. D., Fetz E. E., Mewes K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res. 1991;87:213–252. doi: 10.1016/s0079-6123(08)63054-x. [DOI] [PubMed] [Google Scholar]
- Davies J. G., Kirkwood P. A., Sears T. A. The detection of monosynaptic connexions from inspiratory bulbospinal neurones to inspiratory motoneurones in the cat. J Physiol. 1985 Nov;368:33–62. doi: 10.1113/jphysiol.1985.sp015845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fetz E. E., Cheney P. D. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol. 1980 Oct;44(4):751–772. doi: 10.1152/jn.1980.44.4.751. [DOI] [PubMed] [Google Scholar]
- Flament D., Fortier P. A., Fetz E. E. Response patterns and postspike effects of peripheral afferents in dorsal root ganglia of behaving monkeys. J Neurophysiol. 1992 Apr;67(4):875–889. doi: 10.1152/jn.1992.67.4.875. [DOI] [PubMed] [Google Scholar]
- Grantyn A., Berthoz A. Burst activity of identified tecto-reticulo-spinal neurons in the alert cat. Exp Brain Res. 1985;57(2):417–421. doi: 10.1007/BF00236550. [DOI] [PubMed] [Google Scholar]
- Grantyn A., Berthoz A. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. I. Behavioral properties. Exp Brain Res. 1987;66(2):339–354. doi: 10.1007/BF00243309. [DOI] [PubMed] [Google Scholar]
- Grantyn A., Grantyn R. Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbo-spinal tract. Exp Brain Res. 1982;46(2):243–256. doi: 10.1007/BF00237182. [DOI] [PubMed] [Google Scholar]
- Grantyn A., Olivier E., Kitama T. Tracing premotor brain stem networks of orienting movements. Curr Opin Neurobiol. 1993 Dec;3(6):973–981. doi: 10.1016/0959-4388(93)90170-4. [DOI] [PubMed] [Google Scholar]
- Grantyn R., Baker R., Grantyn A. Morphological and physiological identification of excitatory pontine reticular neurons projecting to the cat abducens nucleus and spinal cord. Brain Res. 1980 Sep 29;198(1):221–228. doi: 10.1016/0006-8993(80)90359-5. [DOI] [PubMed] [Google Scholar]
- Grantyn R., Grantyn A., Schierwagen A. Passive membrane properties, afterpotentials and repetitive firing of superior colliculus neurons studied in the anesthetized cat. Exp Brain Res. 1983;50(2-3):377–391. doi: 10.1007/BF00239204. [DOI] [PubMed] [Google Scholar]
- Huerta M. F., Harting J. K. Tectal control of spinal cord activity: neuroanatomical demonstration of pathways connecting the superior colliculus with the cervical spinal cord grey. Prog Brain Res. 1982;57:293–328. doi: 10.1016/s0079-6123(08)64135-7. [DOI] [PubMed] [Google Scholar]
- Iwamoto Y., Sasaki S. Monosynaptic excitatory connexions of reticulospinal neurones in the nucleus reticularis pontis caudalis with dorsal neck motoneurones in the cat. Exp Brain Res. 1990;80(2):277–289. doi: 10.1007/BF00228155. [DOI] [PubMed] [Google Scholar]
- Iwamoto Y., Sasaki S., Suzuki I. Input-output organization of reticulospinal neurones, with special reference to connexions with dorsal neck motoneurones in the cat. Exp Brain Res. 1990;80(2):260–276. doi: 10.1007/BF00228154. [DOI] [PubMed] [Google Scholar]
- Kasser R. J., Cheney P. D. Characteristics of corticomotoneuronal postspike facilitation and reciprocal suppression of EMG activity in the monkey. J Neurophysiol. 1985 Apr;53(4):959–978. doi: 10.1152/jn.1985.53.4.959. [DOI] [PubMed] [Google Scholar]
- Kirkwood P. A. On the use and interpretation of cross-correlations measurements in the mammalian central nervous system. J Neurosci Methods. 1979 Aug;1(2):107–132. doi: 10.1016/0165-0270(79)90009-8. [DOI] [PubMed] [Google Scholar]
- Lemon R. N., Mantel G. W., Muir R. B. Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. J Physiol. 1986 Dec;381:497–527. doi: 10.1113/jphysiol.1986.sp016341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemon R. N., Mantel G. W. The influence of changes in discharge frequency of corticospinal neurones on hand muscles in the monkey. J Physiol. 1989 Jun;413:351–378. doi: 10.1113/jphysiol.1989.sp017658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masino T. Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry. Brain Behav Evol. 1992;40(2-3):98–111. doi: 10.1159/000113906. [DOI] [PubMed] [Google Scholar]
- Moore G. P., Segundo J. P., Perkel D. H., Levitan H. Statistical signs of synaptic interaction in neurons. Biophys J. 1970 Sep;10(9):876–900. doi: 10.1016/S0006-3495(70)86341-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muir R. B., Porter R. The effect of a preceding stimulus on temporal facilitation at corticomotoneuronal synapses. J Physiol. 1973 Feb;228(3):749–763. doi: 10.1113/jphysiol.1973.sp010110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munoz D. P., Guitton D. Presaccadic burst discharges of tecto-reticulo-spinal neurons in the alert head-free and -fixed cat. Brain Res. 1986 Nov 19;398(1):185–190. doi: 10.1016/0006-8993(86)91267-9. [DOI] [PubMed] [Google Scholar]
- Munoz D. P., Guitton D., Pélisson D. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges. J Neurophysiol. 1991 Nov;66(5):1642–1666. doi: 10.1152/jn.1991.66.5.1642. [DOI] [PubMed] [Google Scholar]
- Olivier E., Grantyn A., Chat M., Berthoz A. The control of slow orienting eye movements by tectoreticulospinal neurons in the cat: behavior, discharge patterns and underlying connections. Exp Brain Res. 1993;93(3):435–449. doi: 10.1007/BF00229359. [DOI] [PubMed] [Google Scholar]
- Peterson B. W., Anderson M. E., Filion M. Responses of ponto-medullary reticular neurons to cortical, tectal and cutaneous stimuli. Exp Brain Res. 1974;21(1):19–44. doi: 10.1007/BF00234256. [DOI] [PubMed] [Google Scholar]
- Rose P. K., MacDonald J., Abrahams V. C. Projections of the tectospinal tract to the upper cervical spinal cord of the cat: a study with the anterograde tracer PHA-L. J Comp Neurol. 1991 Dec 1;314(1):91–105. doi: 10.1002/cne.903140109. [DOI] [PubMed] [Google Scholar]
- Roucoux A., Guitton D., Crommelinck M. Stimulation of the superior colliculus in the alert cat. II. Eye and head movements evoked when the head is unrestrained. Exp Brain Res. 1980;39(1):75–85. doi: 10.1007/BF00237071. [DOI] [PubMed] [Google Scholar]
- Shinoda Y., Yamaguchi T., Futami T. Multiple axon collaterals of single corticospinal axons in the cat spinal cord. J Neurophysiol. 1986 Mar;55(3):425–448. doi: 10.1152/jn.1986.55.3.425. [DOI] [PubMed] [Google Scholar]
- Straschill M., Schick F. Discharges of superior colliculus neurons during head and eye movements of the alert cat. Exp Brain Res. 1977 Feb 16;27(2):131–141. doi: 10.1007/BF00237694. [DOI] [PubMed] [Google Scholar]
