Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jan 1;482(Pt 1):29–38. doi: 10.1113/jphysiol.1995.sp020497

Primary afferent-evoked glycine- and GABA-mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro.

M Yoshimura 1, S Nishi 1
PMCID: PMC1157751  PMID: 7730987

Abstract

1. The possible roles of glycine and gamma-aminobutyric acid (GABA) as inhibitory transmitters in the spinal dorsal horn were studied by intracellular recordings from substantia gelatinosa (SG) neurones in transverse slices of the adult rat spinal cord which retained an attached dorsal root. 2. Stimulation of primary afferent A delta fibres evoked an initial excitatory postsynaptic potential (fast EPSP) followed by a short and/or long inhibitory postsynaptic potential (short and long IPSP). The short IPSP, observed in twenty-nine SG neurones (37%) which received inhibitory inputs, had a mean latency of 3.6 ms and a half-decay time of 11 ms, while the long IPSP had a mean latency of 3.7 ms and a half-decay time of 42 ms and was observed in thirty-seven SG neurones (47%). The remaining twelve neurones (16%) exhibited both short and long IPSPs. Both IPSPs reversed polarity at a membrane potential of -70 +/- 4 mV. The short IPSP was reversibly blocked by the glycine receptor antagonist strychnine (0.5-2 microM), while the long IPSP was reversibly blocked by the GABAA receptor antagonist bicuculline (10-20 microM). 3. In the majority of SG neurones, the short and long IPSPs appeared to be disynaptic and were blocked by the non-N-methyl-D-aspartic acid (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 5-10 microM). Both IPSPs were less sensitive (depressed by less than 30%) to the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV; 50-100 microM). 4. In ten SG neurones (13%), bath-applied glutamate (0.5-2 mM) increased the amplitude and frequency of IPSPs, which had a similar time course to that of the short IPSP evoked by afferent A delta fibres. The glutamate-induced short IPSPs were blocked by tetrodotoxin (0.5 microM) or strychnine (0.5-1 microM). In twelve neurones (16%), glutamate hyperpolarized the membrane or increased the amplitude and frequency of IPSPs that had a similar time course to that of the A delta fibre-evoked long IPSPs. The glutamate-induced membrane hyperpolarization and long IPSPs decreased in amplitude with membrane hyperpolarization and reversed polarity at -70 +/- 6 mV. These hyperpolarizing responses were blocked by tetrodotoxin (0.5 microM) or bicuculline (10 microM). 5. These observations suggest that primary afferent A delta fibres activate glycinergic and/or GABAergic interneurones primarily through the non-NMDA receptor subclass and result in inhibition of nearby SG neurones in the dorsal horn of the spinal cord.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
29

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba H., Yoshimura M., Nishi S., Shimoji K. Synaptic responses of substantia gelatinosa neurones to dorsal column stimulation in rat spinal cord in vitro. J Physiol. 1994 Jul 1;478(Pt 1):87–99. doi: 10.1113/jphysiol.1994.sp020232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basbaum A. I. Distribution of glycine receptor immunoreactivity in the spinal cord of the rat: cytochemical evidence for a differential glycinergic control of lamina I and V nociceptive neurons. J Comp Neurol. 1988 Dec 15;278(3):330–336. doi: 10.1002/cne.902780303. [DOI] [PubMed] [Google Scholar]
  3. Brown A. G. The dorsal horn of the spinal cord. Q J Exp Physiol. 1982 Apr;67(2):193–212. doi: 10.1113/expphysiol.1982.sp002630. [DOI] [PubMed] [Google Scholar]
  4. Cervero F., Iggo A., Molony V. An electrophysiological study of neurones in the Substantia Gelatinosa Rolandi of the cat's spinal cord. Q J Exp Physiol Cogn Med Sci. 1979 Oct;64(4):297–314. doi: 10.1113/expphysiol.1979.sp002484. [DOI] [PubMed] [Google Scholar]
  5. Cervero F., Iggo A. The substantia gelatinosa of the spinal cord: a critical review. Brain. 1980 Dec;103(4):717–772. doi: 10.1093/brain/103.4.717. [DOI] [PubMed] [Google Scholar]
  6. Cervero F., Molony V., Iggo A. Extracellular and intracellular recordings from neurones in the substantia gelatinosa Rolandi. Brain Res. 1977 Nov 18;136(3):565–569. doi: 10.1016/0006-8993(77)90082-8. [DOI] [PubMed] [Google Scholar]
  7. Inokuchi H., Yoshimura M., Trzebski A., Polosa C., Nishi S. Fast inhibitory postsynaptic potentials and responses to inhibitory amino acids of sympathetic preganglionic neurons in the adult cat. J Auton Nerv Syst. 1992 Nov;41(1-2):53–59. doi: 10.1016/0165-1838(92)90126-2. [DOI] [PubMed] [Google Scholar]
  8. King A. E., Thompson S. W., Woolf C. J. Characterization of the cutaneous input to the ventral horn in vitro using the isolated spinal cord-hind limb preparation. J Neurosci Methods. 1990 Oct;35(1):39–46. doi: 10.1016/0165-0270(90)90092-t. [DOI] [PubMed] [Google Scholar]
  9. Kumazawa T., Perl E. R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol. 1978 Feb 1;177(3):417–434. doi: 10.1002/cne.901770305. [DOI] [PubMed] [Google Scholar]
  10. Light A. R., Perl E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol. 1979 Jul 15;186(2):133–150. doi: 10.1002/cne.901860203. [DOI] [PubMed] [Google Scholar]
  11. Magoul R., Onteniente B., Geffard M., Calas A. Anatomical distribution and ultrastructural organization of the GABAergic system in the rat spinal cord. An immunocytochemical study using anti-GABA antibodies. Neuroscience. 1987 Mar;20(3):1001–1009. doi: 10.1016/0306-4522(87)90258-2. [DOI] [PubMed] [Google Scholar]
  12. Nagy J. I., Hunt S. P. The termination of primary afferents within the rat dorsal horn: evidence for rearrangement following capsaicin treatment. J Comp Neurol. 1983 Aug 1;218(2):145–158. doi: 10.1002/cne.902180203. [DOI] [PubMed] [Google Scholar]
  13. Nicoll R. A., Malenka R. C., Kauer J. A. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev. 1990 Apr;70(2):513–565. doi: 10.1152/physrev.1990.70.2.513. [DOI] [PubMed] [Google Scholar]
  14. Palacios J. M., Wamsley J. K., Kuhar M. J. High affinity GABA receptors-autoradiographic localization. Brain Res. 1981 Oct 19;222(2):285–307. doi: 10.1016/0006-8993(81)91034-9. [DOI] [PubMed] [Google Scholar]
  15. Persohn E., Malherbe P., Richards J. G. In situ hybridization histochemistry reveals a diversity of GABAA receptor subunit mRNAs in neurons of the rat spinal cord and dorsal root ganglia. Neuroscience. 1991;42(2):497–507. doi: 10.1016/0306-4522(91)90392-2. [DOI] [PubMed] [Google Scholar]
  16. REXED B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol. 1952 Jun;96(3):414–495. doi: 10.1002/cne.900960303. [DOI] [PubMed] [Google Scholar]
  17. Ribeiro-Da-Silva A., Coimbra A. Neuronal uptake of [3H]GABA and [3H]glycine in laminae I-III (substantia gelatinosa Rolandi) of the rat spinal cord. An autoradiographic study. Brain Res. 1980 Apr 28;188(2):449–464. doi: 10.1016/0006-8993(80)90044-x. [DOI] [PubMed] [Google Scholar]
  18. Ribeiro-da-Silva A., Coimbra A. Two types of synaptic glomeruli and their distribution in laminae I-III of the rat spinal cord. J Comp Neurol. 1982 Aug 1;209(2):176–186. doi: 10.1002/cne.902090205. [DOI] [PubMed] [Google Scholar]
  19. Ruda M. A., Bennett G. J., Dubner R. Neurochemistry and neural circuitry in the dorsal horn. Prog Brain Res. 1986;66:219–268. doi: 10.1016/s0079-6123(08)64606-3. [DOI] [PubMed] [Google Scholar]
  20. Rudomin P., Jiménez I., Quevedo J., Solodkin M. Pharmacologic analysis of inhibition produced by last-order intermediate nucleus interneurons mediating nonreciprocal inhibition of motoneurons in cat spinal cord. J Neurophysiol. 1990 Jan;63(1):147–160. doi: 10.1152/jn.1990.63.1.147. [DOI] [PubMed] [Google Scholar]
  21. Schneider S. P., Perl E. R. Comparison of primary afferent and glutamate excitation of neurons in the mammalian spinal dorsal horn. J Neurosci. 1988 Jun;8(6):2062–2073. doi: 10.1523/JNEUROSCI.08-06-02062.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steedman W. M., Molony V., Iggo A. Nociceptive neurones in the superficial dorsal horn of cat lumbar spinal cord and their primary afferent inputs. Exp Brain Res. 1985;58(1):171–182. doi: 10.1007/BF00238965. [DOI] [PubMed] [Google Scholar]
  23. Todd A. J. An electron microscope study of glycine-like immunoreactivity in laminae I-III of the spinal dorsal horn of the rat. Neuroscience. 1990;39(2):387–394. doi: 10.1016/0306-4522(90)90275-9. [DOI] [PubMed] [Google Scholar]
  24. Todd A. J., McKenzie J. GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience. 1989;31(3):799–806. doi: 10.1016/0306-4522(89)90442-9. [DOI] [PubMed] [Google Scholar]
  25. Woolf C. J., Fitzgerald M. The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. J Comp Neurol. 1983 Dec 10;221(3):313–328. doi: 10.1002/cne.902210307. [DOI] [PubMed] [Google Scholar]
  26. Yanagisawa M., Hosoki R., Otsuka M. The isolated spinal cord-skin preparation of the newborn rat and effects of some algogenic and analgesic substances. Eur J Pharmacol. 1992 Sep 22;220(2-3):111–117. doi: 10.1016/0014-2999(92)90737-o. [DOI] [PubMed] [Google Scholar]
  27. Yoshimura M., Jessell T. M. Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. J Neurophysiol. 1989 Jul;62(1):96–108. doi: 10.1152/jn.1989.62.1.96. [DOI] [PubMed] [Google Scholar]
  28. Yoshimura M., Jessell T. Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J Physiol. 1990 Nov;430:315–335. doi: 10.1113/jphysiol.1990.sp018293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yoshimura M., Nishi S. Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: pharmacological properties of synaptic currents. Neuroscience. 1993 Mar;53(2):519–526. doi: 10.1016/0306-4522(93)90216-3. [DOI] [PubMed] [Google Scholar]
  30. Yoshimura M., Nishi S. Excitatory amino acid receptors involved in primary afferent-evoked polysynaptic EPSPs of substantia gelatinosa neurons in the adult rat spinal cord slice. Neurosci Lett. 1992 Aug 31;143(1-2):131–134. doi: 10.1016/0304-3940(92)90249-7. [DOI] [PubMed] [Google Scholar]
  31. Yoshimura M., North R. A. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature. 1983 Oct 6;305(5934):529–530. doi: 10.1038/305529a0. [DOI] [PubMed] [Google Scholar]
  32. van den Pol A. N., Gorcs T. Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci. 1988 Feb;8(2):472–492. doi: 10.1523/JNEUROSCI.08-02-00472.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES