Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Feb 1;482(Pt 3):575–581. doi: 10.1113/jphysiol.1995.sp020541

The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

L Chen 1, Y Gu 1, L Y Huang 1
PMCID: PMC1157783  PMID: 7537820

Abstract

1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark J. A., Liu L., Price M., Hersh B., Edelson M., Pasternak G. W. Kappa opiate receptor multiplicity: evidence for two U50,488-sensitive kappa 1 subtypes and a novel kappa 3 subtype. J Pharmacol Exp Ther. 1989 Nov;251(2):461–468. [PubMed] [Google Scholar]
  2. Davies S. N., Lodge D. Evidence for involvement of N-methylaspartate receptors in 'wind-up' of class 2 neurones in the dorsal horn of the rat. Brain Res. 1987 Oct 27;424(2):402–406. doi: 10.1016/0006-8993(87)91487-9. [DOI] [PubMed] [Google Scholar]
  3. Dickenson A. H., Sullivan A. F. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology. 1987 Aug;26(8):1235–1238. doi: 10.1016/0028-3908(87)90275-9. [DOI] [PubMed] [Google Scholar]
  4. Dubner R., Ruda M. A. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci. 1992 Mar;15(3):96–103. doi: 10.1016/0166-2236(92)90019-5. [DOI] [PubMed] [Google Scholar]
  5. Fischli W., Goldstein A., Hunkapiller M. W., Hood L. E. Isolation and amino acid sequence analysis of a 4,000-dalton dynorphin from porcine pituitary. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5435–5437. doi: 10.1073/pnas.79.17.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gu Y. P., Huang L. Y. Block of kainate receptor channels by Ca2+ in isolated spinal trigeminal neurons of rat. Neuron. 1991 May;6(5):777–784. doi: 10.1016/0896-6273(91)90174-x. [DOI] [PubMed] [Google Scholar]
  7. Huang L. Y. Calcium channels in isolated rat dorsal horn neurones, including labelled spinothalamic and trigeminothalamic cells. J Physiol. 1989 Apr;411:161–177. doi: 10.1113/jphysiol.1989.sp017566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iadarola M. J., Douglass J., Civelli O., Naranjo J. R. Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res. 1988 Jul 12;455(2):205–212. doi: 10.1016/0006-8993(88)90078-9. [DOI] [PubMed] [Google Scholar]
  9. Mansour A., Khachaturian H., Lewis M. E., Akil H., Watson S. J. Anatomy of CNS opioid receptors. Trends Neurosci. 1988 Jul;11(7):308–314. doi: 10.1016/0166-2236(88)90093-8. [DOI] [PubMed] [Google Scholar]
  10. Mayer M. L., Westbrook G. L., Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17;309(5965):261–263. doi: 10.1038/309261a0. [DOI] [PubMed] [Google Scholar]
  11. Millan M. J. Kappa-opioid receptors and analgesia. Trends Pharmacol Sci. 1990 Feb;11(2):70–76. doi: 10.1016/0165-6147(90)90321-x. [DOI] [PubMed] [Google Scholar]
  12. Moises H. C., Walker J. M. Electrophysiological effects of dynorphin peptides on hippocampal pyramidal cells in rat. Eur J Pharmacol. 1985 Jan 15;108(1):85–98. doi: 10.1016/0014-2999(85)90286-9. [DOI] [PubMed] [Google Scholar]
  13. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  14. Viveros O. H., Diliberto E. J., Jr, Hazum E., Chang K. J. Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol Pharmacol. 1979 Nov;16(3):1101–1108. [PubMed] [Google Scholar]
  15. Wagner J. J., Terman G. W., Chavkin C. Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature. 1993 Jun 3;363(6428):451–454. doi: 10.1038/363451a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weisskopf M. G., Zalutsky R. A., Nicoll R. A. The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature. 1993 Apr 1;362(6419):423–427. doi: 10.1038/362423a0. [DOI] [PubMed] [Google Scholar]
  17. Woolf C. J., Thompson S. W. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991 Mar;44(3):293–299. doi: 10.1016/0304-3959(91)90100-C. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES