Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Feb 1;482(Pt 3):661–667. doi: 10.1113/jphysiol.1995.sp020548

Vasodilatation and smooth muscle membrane potential changes in arterioles from the guinea-pig small intestine.

N Kotecha 1, T O Neild 1
PMCID: PMC1157790  PMID: 7537821

Abstract

1. Dilatation of arterioles isolated from the guinea-pig small intestine was evoked by stimulation of a submucous ganglion and the application of acetylcholine, vasoactive intestinal peptide, galanin or dynorphin A. Changes in arteriole diameter and smooth muscle membrane potential were recorded simultaneously. 2. Ganglion stimulation caused vasodilatation and smooth muscle hyperpolarization that varied in both amplitude and time course from one arteriole to another. Vasodilatation could occur without hyperpolarization. 3. Vasodilatation caused by acetylcholine was accompanied by a rapidly developing hyperpolarization that began to decline before the maximum vasodilator effect had developed. 4. Vasoactive intestinal peptide caused dilatation without any change in smooth muscle membrane potential. 5. Galanin and dynorphin caused dilatation and a hyperpolarization of similar time course to the dilatation. 6. In 48% of arterioles tested the dilatation appeared to be mediated solely by acetylcholine. In 31% there was a cholinergic component, but no evidence for the involvement of acetylcholine in the remaining 21%. When the non-cholinergic dilatation occurred without a hyperpolarization we conclude that it was due to vasoactive intestinal peptide; otherwise it may have been due to either galanin or dynorphin.

Full text

PDF
661

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andriantsitohaina R., Surprenant A. Acetylcholine released from guinea-pig submucosal neurones dilates arterioles by releasing nitric oxide from endothelium. J Physiol. 1992;453:493–502. doi: 10.1113/jphysiol.1992.sp019241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bornstein J. C., Furness J. B., Costa M. An electrophysiological comparison of substance P-immunoreactive neurons with other neurons in the guinea-pig submucous plexus. J Auton Nerv Syst. 1989 Mar;26(2):113–120. doi: 10.1016/0165-1838(89)90159-8. [DOI] [PubMed] [Google Scholar]
  3. Brayden J. E., Large W. A. Electrophysiological analysis of neurogenic vasodilatation in the isolated lingual artery of the rabbit. Br J Pharmacol. 1986 Sep;89(1):163–171. doi: 10.1111/j.1476-5381.1986.tb11132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brookes S. J., Steele P. A., Costa M. Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 1991 Mar;263(3):471–481. doi: 10.1007/BF00327280. [DOI] [PubMed] [Google Scholar]
  5. Daly C. J., Gordon J. F., McGrath J. C. The use of fluorescent nuclear dyes for the study of blood vessel structure and function: novel applications of existing techniques. J Vasc Res. 1992 Jan-Feb;29(1):41–48. doi: 10.1159/000158930. [DOI] [PubMed] [Google Scholar]
  6. Edvinsson L., Fredholm B. B., Hamel E., Jansen I., Verrecchia C. Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett. 1985 Jul 31;58(2):213–217. doi: 10.1016/0304-3940(85)90166-1. [DOI] [PubMed] [Google Scholar]
  7. Eglen R. M., Whiting R. L. Heterogeneity of vascular muscarinic receptors. J Auton Pharmacol. 1990 Aug;10(4):233–245. doi: 10.1111/j.1474-8673.1990.tb00023.x. [DOI] [PubMed] [Google Scholar]
  8. Einhorn V. F., Hamilton R. C. Action of venom from the scorpion Leiurus quinquestriatus on release of noradrenaline from sympathetic nerve endings of the mouse vas deferens. Toxicon. 1977;15(5):403–412. doi: 10.1016/0041-0101(77)90118-0. [DOI] [PubMed] [Google Scholar]
  9. Galligan J. J., Costa M., Furness J. B. Changes in surviving nerve fibers associated with submucosal arteries following extrinsic denervation of the small intestine. Cell Tissue Res. 1988 Sep;253(3):647–656. doi: 10.1007/BF00219756. [DOI] [PubMed] [Google Scholar]
  10. Galligan J. J., Jiang M. M., Shen K. Z., Surprenant A. Substance P mediates neurogenic vasodilatation in extrinsically denervated guinea-pig submucosal arterioles. J Physiol. 1990 Jan;420:267–280. doi: 10.1113/jphysiol.1990.sp017911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirst G. D., Neild T. O. An analysis of excitatory junctional potentials recorded from arterioles. J Physiol. 1978 Jul;280:87–104. doi: 10.1113/jphysiol.1978.sp012374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Itoh T., Sasaguri T., Makita Y., Kanmura Y., Kuriyama H. Mechanisms of vasodilation induced by vasoactive intestinal polypeptide in rabbit mesenteric artery. Am J Physiol. 1985 Aug;249(2 Pt 2):H231–H240. doi: 10.1152/ajpheart.1985.249.2.H231. [DOI] [PubMed] [Google Scholar]
  13. Murthy K. S., Zhang K. M., Jin J. G., Grider J. R., Makhlouf G. M. VIP-mediated G protein-coupled Ca2+ influx activates a constitutive NOS in dispersed gastric muscle cells. Am J Physiol. 1993 Oct;265(4 Pt 1):G660–G671. doi: 10.1152/ajpgi.1993.265.4.G660. [DOI] [PubMed] [Google Scholar]
  14. Neild T. O., Kotecha N. A study of the phasic response of arterioles of the guinea pig small intestine to prolonged exposure to norepinephrine. Microvasc Res. 1989 Sep;38(2):186–199. doi: 10.1016/0026-2862(89)90027-7. [DOI] [PubMed] [Google Scholar]
  15. Neild T. O. Measurement of arteriole diameter changes by analysis of television images. Blood Vessels. 1989;26(1):48–52. [PubMed] [Google Scholar]
  16. Neild T. O., Shen K. Z., Surprenant A. Vasodilatation of arterioles by acetylcholine released from single neurones in the guinea-pig submucosal plexus. J Physiol. 1990 Jan;420:247–265. doi: 10.1113/jphysiol.1990.sp017910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parsons R. L., Konopka L. M. Analysis of the galanin-induced decrease in membrane excitability in mudpuppy parasympathetic neurons. Neuroscience. 1991;43(2-3):647–660. doi: 10.1016/0306-4522(91)90323-g. [DOI] [PubMed] [Google Scholar]
  18. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  19. Tare M., Parkington H. C., Coleman H. A., Neild T. O., Dusting G. J. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature. 1990 Jul 5;346(6279):69–71. doi: 10.1038/346069a0. [DOI] [PubMed] [Google Scholar]
  20. Vanner S., Surprenant A. Cholinergic and noncholinergic submucosal neurons dilate arterioles in guinea pig colon. Am J Physiol. 1991 Jul;261(1 Pt 1):G136–G144. doi: 10.1152/ajpgi.1991.261.1.G136. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES