Abstract
1. Direct observations were made of responses to systemic hypoxia (breathing 12 or 6% O2 for 3 min) evoked in terminal arterioles (TA, 14-30 microns internal diameter), precapillary arterioles (PCA, 8-18 microns), collecting venules (CV, 12-30 microns) and small veins (SV, 20-50 microns) of the mesenteric circulation of the anaesthetized rat. Changes in vessel diameter were recorded before and after local blockade of alpha-adrenoreceptors with phentolamine when the mesentery was covered with Saran Wrap, which is impermeable to O2, and then after removal of the Saran Wrap, which would have kept local PO2 relatively high even during systemic hypoxia. 2. The majority of TA showed an initial decrease in diameter of 14 +/- 1% (mean +/- S.E.M.). These responses were reversed to increases in diameter (12 +/- 2%) after phentolamine, but virtually abolished after removal of the Saran Wrap (0.3 +/- 2%). 3. Some PCA showed similar behaviour to the TA; others showed an increase in diameter (11 +/- 1%). The increases in diameter were accentuated after phentolamine (16 +/- 1%), but were reduced after removal of the Saran Wrap (6 +/- 2%). 4. CV and SV showed either a decrease in diameter followed by relaxation towards control levels, or an increase in diameter that waned before hypoxia ceased (6 +/- 1% and 1 +/- 1%, respectively). The responses of CV were not altered by phentolamine (8 +/- 1%), but SV showed larger increases in diameter (5 +/- 1%).(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Busse R., Förstermann U., Matsuda H., Pohl U. The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflugers Arch. 1984 May;401(1):77–83. doi: 10.1007/BF00581536. [DOI] [PubMed] [Google Scholar]
- Busse R., Pohl U., Kellner C., Klemm U. Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch. 1983 Apr;397(1):78–80. doi: 10.1007/BF00585175. [DOI] [PubMed] [Google Scholar]
- Deussen A., Möser G., Schrader J. Contribution of coronary endothelial cells to cardiac adenosine production. Pflugers Arch. 1986 Jun;406(6):608–614. doi: 10.1007/BF00584028. [DOI] [PubMed] [Google Scholar]
- Duling B. R., Berne R. M. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res. 1970 Nov;27(5):669–678. doi: 10.1161/01.res.27.5.669. [DOI] [PubMed] [Google Scholar]
- Furness J. B., Marshall J. M. Correlation of the directly observed responses of mesenteric vessles of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves. J Physiol. 1974 May;239(1):75–88. doi: 10.1113/jphysiol.1974.sp010556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- House S. D., Johnson P. C. Microvascular pressure in venules of skeletal muscle during arterial pressure reduction. Am J Physiol. 1986 May;250(5 Pt 2):H838–H845. doi: 10.1152/ajpheart.1986.250.5.H838. [DOI] [PubMed] [Google Scholar]
- Hébert M. T., Marshall J. M. Direct observations of effects of baroreceptor stimulation on mesenteric circulation of the rat. J Physiol. 1988 Jun;400:29–44. doi: 10.1113/jphysiol.1988.sp017108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hébert M. T., Marshall J. M. Direct observations of responses of mesenteric microcirculation of the rat to circulating noradrenaline. J Physiol. 1985 Nov;368:393–407. doi: 10.1113/jphysiol.1985.sp015864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang D. J., Johnson P. C. Elevated ambient oxygen does not affect autoregulation in cat mesentery. Am J Physiol. 1988 Jul;255(1 Pt 2):H131–H137. doi: 10.1152/ajpheart.1988.255.1.H131. [DOI] [PubMed] [Google Scholar]
- Louwerse A. M., Marshall J. M. The role of vasopressin in the regional vascular responses evoked in the spontaneously breathing rat by systemic hypoxia. J Physiol. 1993 Oct;470:463–472. doi: 10.1113/jphysiol.1993.sp019869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J. M. Analysis of cardiovascular responses evoked following changes in peripheral chemoreceptor activity in the rat. J Physiol. 1987 Dec;394:393–414. doi: 10.1113/jphysiol.1987.sp016877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J. M., Metcalfe J. D. Analysis of the cardiovascular changes induced in the rat by graded levels of systemic hypoxia. J Physiol. 1988 Dec;407:385–403. doi: 10.1113/jphysiol.1988.sp017422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J. M., Metcalfe J. D. Effects of systemic hypoxia on the distribution of cardiac output in the rat. J Physiol. 1990 Jul;426:335–353. doi: 10.1113/jphysiol.1990.sp018141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J. M., Tandon H. C. Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibres in the rat. J Physiol. 1984 May;350:447–459. doi: 10.1113/jphysiol.1984.sp015211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J. M., Thomas T., Turner L. A link between adenosine, ATP-sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia. J Physiol. 1993 Dec;472:1–9. doi: 10.1113/jphysiol.1993.sp019931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mian R., Marshall J. M., Kumar P. Interactions between K+ and beta 2-adrenoreceptors in determining muscle vasodilatation induced in the rat by systemic hypoxia. Exp Physiol. 1990 May;75(3):407–410. doi: 10.1113/expphysiol.1990.sp003416. [DOI] [PubMed] [Google Scholar]
- Mian R., Marshall J. M. Responses observed in individual arterioles and venules of rat skeletal muscle during systemic hypoxia. J Physiol. 1991 May;436:485–497. doi: 10.1113/jphysiol.1991.sp018562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mian R., Marshall J. M. The role of adenosine in dilator responses induced in arterioles and venules of rat skeletal muscle by systemic hypoxia. J Physiol. 1991 Nov;443:499–511. doi: 10.1113/jphysiol.1991.sp018847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mian R., Marshall J. M. The roles of catecholamines in responses evoked in arterioles and venules of rat skeletal muscle by systemic hypoxia. J Physiol. 1991 May;436:499–510. doi: 10.1113/jphysiol.1991.sp018563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neylon M., Marshall J. M. The role of adenosine in the respiratory and cardiovascular response to systemic hypoxia in the rat. J Physiol. 1991;440:529–545. doi: 10.1113/jphysiol.1991.sp018723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson J. D., Gordon J. L. Nucleotide metabolism by endothelium. Annu Rev Physiol. 1985;47:617–627. doi: 10.1146/annurev.ph.47.030185.003153. [DOI] [PubMed] [Google Scholar]
- Pohl U., Busse R. Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol. 1989 Jun;256(6 Pt 2):H1595–H1600. doi: 10.1152/ajpheart.1989.256.6.H1595. [DOI] [PubMed] [Google Scholar]
- Segal S. S., Damon D. N., Duling B. R. Propagation of vasomotor responses coordinates arteriolar resistances. Am J Physiol. 1989 Mar;256(3 Pt 2):H832–H837. doi: 10.1152/ajpheart.1989.256.3.H832. [DOI] [PubMed] [Google Scholar]
- Segal S. S., Duling B. R. Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling? Am J Physiol. 1989 Mar;256(3 Pt 2):H838–H845. doi: 10.1152/ajpheart.1989.256.3.H838. [DOI] [PubMed] [Google Scholar]
- Sullivan S. M., Johnson P. C. Effect of oxygen on arteriolar dimensions and blood flow in cat sartorius muscle. Am J Physiol. 1981 Oct;241(4):H547–H556. doi: 10.1152/ajpheart.1981.241.4.H547. [DOI] [PubMed] [Google Scholar]
