Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Feb 1;482(Pt 3):687–696. doi: 10.1113/jphysiol.1995.sp020551

Baroreceptor influence on the relationships between discharges of different sympathetic nerves of the cat.

B Kocsis 1
PMCID: PMC1157793  PMID: 7738857

Abstract

1. The sympathetic nerve discharge (SND) of three different nerves and the arterial blood pressure (BP) were recorded simultaneously in baroreceptor-intact cats. The linear correlation between different nerve pairs was characterized by the coherence spectrum and its baroreceptor-related component was estimated by partialization of the coherence on the basis of the blood pressure signal. 2. The SND-SND coherence values were higher than those found earlier in baroreceptor-denervated cats. As shown by partial coherence analysis, in about 50% of the experiments with high SND-BP coherence (25 nerve pair recordings), this could be explained by superposition of the effects of common central sources of activity and of the additional common rhythmic input from the baroreceptors. Partialization was ineffective in 50% of the experiments with high SND-BP coherence (22 nerve pairs) and also when the SND-BP coherence was relatively low (17 nerve pairs). On the group average, after elimination of the components explained by baroreceptor influence, the peak SND-SND coherence no longer correlated with the SND-BP coherence and both the numerical values and the relative pattern of coherences between different nerves became similar to those characteristic for baroreceptor-denervated cats. 3. It is suggested that the method used in this study represents a 'theoretical barodenervation' and may be of great value in experiments, when surgical or chemical denervation of the baroreceptors does not represent a real option, e.g. in human subjects.

Full text

PDF
687

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian E. D., Bronk D. W., Phillips G. Discharges in mammalian sympathetic nerves. J Physiol. 1932 Feb 8;74(2):115–133. doi: 10.1113/jphysiol.1932.sp002832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barman S. M., Gebber G. L. Sequence of activation of ventrolateral and dorsal medullary sympathetic neurons. Am J Physiol. 1983 Sep;245(3):R438–R447. doi: 10.1152/ajpregu.1983.245.3.R438. [DOI] [PubMed] [Google Scholar]
  3. Barman S. M., Gebber G. L., Zhong S. The 10-Hz rhythm in sympathetic nerve discharge. Am J Physiol. 1992 Jun;262(6 Pt 2):R1006–R1014. doi: 10.1152/ajpregu.1992.262.6.R1006. [DOI] [PubMed] [Google Scholar]
  4. Cohen M. I., Gootman P. M. Periodicities in efferent discharge of splanchnic nerve of the cat. Am J Physiol. 1970 Apr;218(4):1092–1101. doi: 10.1152/ajplegacy.1970.218.4.1092. [DOI] [PubMed] [Google Scholar]
  5. Fedina L., Kollai M., Kovách A. G. Specific baroreceptor control of vertebral and cardiac sympathetic activity. Acta Physiol Acad Sci Hung. 1975;46(3):235–245. [PubMed] [Google Scholar]
  6. Gebber G. L., Barman S. M. Lateral tegmental field neurons of cat medulla: a potential source of basal sympathetic nerve discharge. J Neurophysiol. 1985 Dec;54(6):1498–1512. doi: 10.1152/jn.1985.54.6.1498. [DOI] [PubMed] [Google Scholar]
  7. Gersch W., Goddard G. V. Epileptic focus location: spectral analysis method. Science. 1970 Aug 14;169(3946):701–702. doi: 10.1126/science.169.3946.701. [DOI] [PubMed] [Google Scholar]
  8. Gootman P. M., Cohen M. I. Inhibitory effects on fast sympathetic rhythms. Brain Res. 1983 Jun 27;270(1):134–136. doi: 10.1016/0006-8993(83)90800-4. [DOI] [PubMed] [Google Scholar]
  9. Green J. H., Heffron P. F. Observations on the origin and genesis of a rapid sympathetic rhythm. Arch Int Pharmacodyn Ther. 1967 Oct;169(2):403–411. [PubMed] [Google Scholar]
  10. Kocsis B. Basis for differential coupling between rhythmic discharges of sympathetic efferent nerves. Am J Physiol. 1994 Oct;267(4 Pt 2):R1008–R1019. doi: 10.1152/ajpregu.1994.267.4.R1008. [DOI] [PubMed] [Google Scholar]
  11. Kocsis B., Fedina L., Gyimesi-Pelczer K., Ladocsi T., Pasztor E. Differential sympathetic reactions during cerebral ischaemia in cats: the role of desynchronized nerve discharge. J Physiol. 1993 Sep;469:37–50. doi: 10.1113/jphysiol.1993.sp019803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kocsis B., Gebber G. L., Barman S. M., Kenney M. J. Relationships between activity of sympathetic nerve pairs: phase and coherence. Am J Physiol. 1990 Sep;259(3 Pt 2):R549–R560. doi: 10.1152/ajpregu.1990.259.3.R549. [DOI] [PubMed] [Google Scholar]
  13. Kollai M., Koizumi K., Brooks C. M. Nature of differential sympathetic discharges in chemoreceptor reflexes. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5239–5243. doi: 10.1073/pnas.75.10.5239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lopes da Silva F. H., Vos J. E., Mooibroek J., Van Rotterdam A. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr Clin Neurophysiol. 1980 Dec;50(5-6):449–456. doi: 10.1016/0013-4694(80)90011-5. [DOI] [PubMed] [Google Scholar]
  15. Ninomiya I., Akiyama T., Nishiura N. Mechanism of cardiac-related synchronized cardiac sympathetic nerve activity in awake cats. Am J Physiol. 1990 Sep;259(3 Pt 2):R499–R506. doi: 10.1152/ajpregu.1990.259.3.R499. [DOI] [PubMed] [Google Scholar]
  16. Ninomiya I., Nishiura N., Matsukawa K., Akiyama T. Fundamental rhythm of cardiac sympathetic nerve activity in awake cats at rest and during body movement. Jpn J Physiol. 1989;39(5):743–753. doi: 10.2170/jjphysiol.39.743. [DOI] [PubMed] [Google Scholar]
  17. Ninomiya I., Nisimaru N., Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol. 1971 Nov;221(5):1346–1351. doi: 10.1152/ajplegacy.1971.221.5.1346. [DOI] [PubMed] [Google Scholar]
  18. Taylor D. G., Gebber tgl Baroreceptor mechanisms controlling sympathetic nervous rhythms of central origin. Am J Physiol. 1975 Apr;228(4):1002–1003. doi: 10.1152/ajplegacy.1975.228.4.1002. [DOI] [PubMed] [Google Scholar]
  19. Tharp B. R., Gersch W. Spectral analysis of seizures in humans. Comput Biomed Res. 1975 Dec;8(6):503–521. doi: 10.1016/0010-4809(75)90023-3. [DOI] [PubMed] [Google Scholar]
  20. Wallin B. G., Burke D., Gandevia S. C. Coherence between the sympathetic drives to relaxed and contracting muscles of different limbs of human subjects. J Physiol. 1992 Sep;455:219–233. doi: 10.1113/jphysiol.1992.sp019298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhong S., Kenney M. J., Gebber G. L. High power, low frequency components of cardiac, renal, splenic and vertebral sympathetic nerve activities are uniformly reduced by spinal cord transection. Brain Res. 1991 Aug 9;556(1):130–134. doi: 10.1016/0006-8993(91)90556-b. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES