Abstract
1. The influence of baroreceptor unloading on cutaneous vasodilatation was investigated in ten human subjects during dynamic supine cycle ergometer exercise at 28 degrees C. Increases in forearm skin blood flow (venous occlusion plethysmography) and arterial blood pressure (non-invasive) were measured and used to calculate forearm vascular conductance while local chest sweating rate was measured by dew-point hygrometry. Subjects performed two similar exercise protocols with and without baroreceptor unloading induced by application of -40 mmHg lower body negative pressure (LBNP). The LBNP condition was reversed (i.e. either removed or applied) after 15 min while exercise continued for an additional 20 min. 2. During exercise without LBNP, the body core temperature threshold for vasodilatation (measured as oesophageal temperature, Tc) averaged 37.06 +/- 0.12 degrees C (+/- S.E.M.) and increased to 37.30 +/- 0.09 degrees C (P < 0.05) during exercise with LBNP. The rate of rise of forearm vascular conductance (FVC) per unit increase in Tc (an expression of thermal sensitivity) and peak FVC at 15 min was significantly attenuated during baroreceptor unloading. These effects were rapidly reversed when LBNP was turned off. 3. Baroreceptor unloading during the first 15 min of exercise attenuated the local chest sweating rate, which was also reversed when LBNP was removed. 4. The time course and quickness in which baroreceptor unloading modulated thermoregulatory control of skin blood flow and local chest sweat rate suggests that the interaction between these two homeostatic mechanisms is primarily neurally mediated. The ability of baroreceptor activity to modulate both control of skin blood flow and sweating suggests a common site of interaction, more proximal than the effector organs, and involving the active vasodilator system.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bini G., Hagbarth K. E., Hynninen P., Wallin B. G. Thermoregulatory and rhythm-generating mechanisms governing the sudomotor and vasoconstrictor outflow in human cutaneous nerves. J Physiol. 1980 Sep;306:537–552. doi: 10.1113/jphysiol.1980.sp013413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brengelmann G. L., Johnson J. M., Hermansen L., Rowell L. B. Altered control of skin blood flow during exercise at high internal temperatures. J Appl Physiol Respir Environ Exerc Physiol. 1977 Nov;43(5):790–794. doi: 10.1152/jappl.1977.43.5.790. [DOI] [PubMed] [Google Scholar]
- Detry J. M., Brengelmann G. L., Rowell L. B., Wyss C. Skin and muscle components of forearm blood flow in directly heated resting man. J Appl Physiol. 1972 Apr;32(4):506–511. doi: 10.1152/jappl.1972.32.4.506. [DOI] [PubMed] [Google Scholar]
- Fortney S. M., Nadel E. R., Wenger C. B., Bove J. R. Effect of blood volume on sweating rate and body fluids in exercising humans. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1594–1600. doi: 10.1152/jappl.1981.51.6.1594. [DOI] [PubMed] [Google Scholar]
- Fortney S. M., Wenger C. B., Bove J. R., Nadel E. R. Effect of hyperosmolality on control of blood flow and sweating. J Appl Physiol Respir Environ Exerc Physiol. 1984 Dec;57(6):1688–1695. doi: 10.1152/jappl.1984.57.6.1688. [DOI] [PubMed] [Google Scholar]
- Johnson J. M., Rowell L. B. Forearm skin and muscle vascular responses to prolonged leg exercise in man. J Appl Physiol. 1975 Dec;39(6):920–924. doi: 10.1152/jappl.1975.39.6.920. [DOI] [PubMed] [Google Scholar]
- Kellogg D. L., Jr, Johnson J. M., Kenney W. L., Pérgola P. E., Kosiba W. A. Mechanisms of control of skin blood flow during prolonged exercise in humans. Am J Physiol. 1993 Aug;265(2 Pt 2):H562–H568. doi: 10.1152/ajpheart.1993.265.2.H562. [DOI] [PubMed] [Google Scholar]
- Kellogg D. L., Jr, Johnson J. M., Kosiba W. A. Baroreflex control of the cutaneous active vasodilator system in humans. Circ Res. 1990 May;66(5):1420–1426. doi: 10.1161/01.res.66.5.1420. [DOI] [PubMed] [Google Scholar]
- Kellogg D. L., Jr, Johnson J. M., Kosiba W. A. Competition between cutaneous active vasoconstriction and active vasodilation during exercise in humans. Am J Physiol. 1991 Oct;261(4 Pt 2):H1184–H1189. doi: 10.1152/ajpheart.1991.261.4.H1184. [DOI] [PubMed] [Google Scholar]
- Kellogg D. L., Jr, Johnson J. M., Kosiba W. A. Control of internal temperature threshold for active cutaneous vasodilation by dynamic exercise. J Appl Physiol (1985) 1991 Dec;71(6):2476–2482. doi: 10.1152/jappl.1991.71.6.2476. [DOI] [PubMed] [Google Scholar]
- Kellogg D. L., Jr, Johnson J. M., Kosiba W. A. Selective abolition of adrenergic vasoconstrictor responses in skin by local iontophoresis of bretylium. Am J Physiol. 1989 Nov;257(5 Pt 2):H1599–H1606. doi: 10.1152/ajpheart.1989.257.5.H1599. [DOI] [PubMed] [Google Scholar]
- Kenney W. L., Tankersley C. G., Newswanger D. L., Puhl S. M. Alpha 1-adrenergic blockade does not alter control of skin blood flow during exercise. Am J Physiol. 1991 Mar;260(3 Pt 2):H855–H861. doi: 10.1152/ajpheart.1991.260.3.H855. [DOI] [PubMed] [Google Scholar]
- Mack G., Nose H., Nadel E. R. Role of cardiopulmonary baroreflexes during dynamic exercise. J Appl Physiol (1985) 1988 Oct;65(4):1827–1832. doi: 10.1152/jappl.1988.65.4.1827. [DOI] [PubMed] [Google Scholar]
- Nadel E. R., Cafarelli E., Roberts M. F., Wenger C. B. Circulatory regulation during exercise in different ambient temperatures. J Appl Physiol Respir Environ Exerc Physiol. 1979 Mar;46(3):430–437. doi: 10.1152/jappl.1979.46.3.430. [DOI] [PubMed] [Google Scholar]
- Nadel E. R., Mitchell J. W., Saltin B., Stolwijk J. A. Peripheral modifications to the central drive for sweating. J Appl Physiol. 1971 Dec;31(6):828–833. doi: 10.1152/jappl.1971.31.6.828. [DOI] [PubMed] [Google Scholar]
- Nadel E. R., Mitchell J. W., Stolwijk J. A. Differential thermal sensitivity in the human skin. Pflugers Arch. 1973;340(1):71–76. doi: 10.1007/BF00592198. [DOI] [PubMed] [Google Scholar]
- Nielsen B., Rowell L. B., Bonde-Petersen F. Cardiovascular responses to heat stress and blood volume displacements during exercise in man. Eur J Appl Physiol Occup Physiol. 1984;52(4):370–374. doi: 10.1007/BF00943365. [DOI] [PubMed] [Google Scholar]
- Nishiyasu T. S., Shi X. G., Mack G. W., Nadel E. R. Effect of hypovolemia on forearm vascular resistance control during exercise in the heat. J Appl Physiol (1985) 1991 Oct;71(4):1382–1386. doi: 10.1152/jappl.1991.71.4.1382. [DOI] [PubMed] [Google Scholar]
- Nose H., Takamata A., Mack G. W., Oda Y., Kawabata T., Hashimoto S., Hirose M., Chihara E., Morimoto T. Right atrial pressure and forearm blood flow during prolonged exercise in a hot environment. Pflugers Arch. 1994 Feb;426(3-4):177–182. doi: 10.1007/BF00374769. [DOI] [PubMed] [Google Scholar]
- RODDIE I. C., SHEPHERD J. T., WHELAN R. F. The contribution of constrictor and dilator nerves to the skin vasodilatation during body heating. J Physiol. 1957 May 23;136(3):489–497. doi: 10.1113/jphysiol.1957.sp005775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts M. F., Wenger C. B. Control of skin blood flow during exercise by thermal reflexes and baroreflexes. J Appl Physiol Respir Environ Exerc Physiol. 1980 Apr;48(4):717–723. doi: 10.1152/jappl.1980.48.4.717. [DOI] [PubMed] [Google Scholar]
- Rowell L. B., Wyss C. R., Brengelmann G. L. Sustained human skin and muscle vasoconstriction with reduced baroreceptor activity. J Appl Physiol. 1973 May;34(5):639–643. doi: 10.1152/jappl.1973.34.5.639. [DOI] [PubMed] [Google Scholar]
- Solack S. D., Brengelmann G. L., Freund P. R. Sweat rate vs. forearm blood flow during lower body negative pressure. J Appl Physiol (1985) 1985 May;58(5):1546–1552. doi: 10.1152/jappl.1985.58.5.1546. [DOI] [PubMed] [Google Scholar]
- Tainio H., Vaalasti A., Rechardt L. The distribution of substance P-, CGRP-, galanin- and ANP-like immunoreactive nerves in human sweat glands. Histochem J. 1987 Jun-Jul;19(6-7):375–380. doi: 10.1007/BF01680455. [DOI] [PubMed] [Google Scholar]
- Tripathi A., Nadel E. R. Forearm skin and muscle vasoconstriction during lower body negative pressure. J Appl Physiol (1985) 1986 May;60(5):1535–1541. doi: 10.1152/jappl.1986.60.5.1535. [DOI] [PubMed] [Google Scholar]
- Wenger C. B., Roberts M. F., Stolwijk J. A., Nadel E. R. Forearm blood flow during body temperature transients produced by leg exercise. J Appl Physiol. 1975 Jan;38(1):58–63. doi: 10.1152/jappl.1975.38.1.58. [DOI] [PubMed] [Google Scholar]
- Wyss C. R., Brengelmann G. L., Johnson J. M., Rowell L. B., Niederberger M. Control of skin blood flow, sweating, and heart rate: role of skin vs. core temperature. J Appl Physiol. 1974 Jun;36(6):726–733. doi: 10.1152/jappl.1974.36.6.726. [DOI] [PubMed] [Google Scholar]
- Zoller R. P., Mark A. L., Abboud F. M., Schmid P. G., Heistad D. D. The role of low pressure baroreceptors in reflex vasoconstrictor responses in man. J Clin Invest. 1972 Nov;51(11):2967–2972. doi: 10.1172/JCI107121. [DOI] [PMC free article] [PubMed] [Google Scholar]
