Abstract
1. We examined Ca2+ influx mechanisms using the whole-cell patch-clamp technique in primary cultures of rat glomerulosa cells. 2. Depolarization of the plasma membrane, as studied by a stepwise or ramp depolarization technique, activated low-threshold, transient (T-type) and high-threshold, long-lasting (L-type) voltage-dependent calcium channels (VDCCs). 3. Extracellular K+ activated an inward current (Ig1), even in voltage-clamped cells. This phenomenon was observed within the physiological concentration range, beginning at 4.6 mM K+o (as opposed to the control level of 3.6 mM K+o). Increased cell conductance and increased background noise indicated that Ig1 is evoked by enhanced channel activity. Potassium induced no outward current in the voltage range examined (-120 to +60 mV). 4. When non-permeable anions were present only in the pipette and Na+ and Mg2+ were omitted from the bath, K+ still activated the current. Ig1 was blocked by 100 microM cadmium but was insensitive to 2 microM nifedipine or to 300 microM Ni2+. 5. In fluorimetric studies elevation of the cytoplasmic Ca2+ concentration in response to K+ (5.6-13.6 mM) was reduced only partially when VDCCs were blocked with Ni2+ (200 microM) and nifedipine (2 microM). 6. Elevation of the K+ concentration shifted the threshold potential of the T-type calcium channel in the negative direction. 7. In summary, K+ as a ligand activates Ca(2+)-permeable channels in rat glomerulosa cells. This current may contribute to the development of Ca2+ signals in response to stimulation with K+ in the physiological range. The reduction of the activation threshold of the T-type current by K+ may also be of physiological significance.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cohen C. J., McCarthy R. T., Barrett P. Q., Rasmussen H. Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2412–2416. doi: 10.1073/pnas.85.7.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durroux T., Gallo-Payet N., Payet M. D. Three components of the calcium current in cultured glomerulosa cells from rat adrenal gland. J Physiol. 1988 Oct;404:713–729. doi: 10.1113/jphysiol.1988.sp017315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
- Fasolato C., Hoth M., Matthews G., Penner R. Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3068–3072. doi: 10.1073/pnas.90.7.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frace A. M., Maruoka F., Noma A. External K+ increases Na+ conductance of the hyperpolarization-activated current in rabbit cardiac pacemaker cells. Pflugers Arch. 1992 Jun;421(2-3):97–99. [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Heinemann S. H., Conti F. Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol. 1992;207:131–148. doi: 10.1016/0076-6879(92)07009-d. [DOI] [PubMed] [Google Scholar]
- Hunyady L., Kayser S., Cragoe E. J., Jr, Balla I., Balla T., Spät A. Na+-H+ and Na+-Ca2+ exchange in glomerulosa cells: possible role in control of aldosterone production. Am J Physiol. 1988 Jun;254(6 Pt 1):C744–C750. doi: 10.1152/ajpcell.1988.254.6.C744. [DOI] [PubMed] [Google Scholar]
- Matsunaga H., Maruyama Y., Kojima I., Hoshi T. Transient Ca2+-channel current characterized by a low-threshold voltage in zona glomerulosa cells of rat adrenal cortex. Pflugers Arch. 1987 Apr;408(4):351–355. doi: 10.1007/BF00581128. [DOI] [PubMed] [Google Scholar]
- Matsunaga H., Yamashita N., Maruyama Y., Kojima I., Kurokawa K. Evidence for two distinct voltage-gated calcium channel currents in bovine adrenal glomerulosa cells. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1049–1054. doi: 10.1016/0006-291x(87)90514-6. [DOI] [PubMed] [Google Scholar]
- McDonald T. V., Premack B. A., Gardner P. Flash photolysis of caged inositol 1,4,5-trisphosphate activates plasma membrane calcium current in human T cells. J Biol Chem. 1993 Feb 25;268(6):3889–3896. [PubMed] [Google Scholar]
- Pardo L. A., Heinemann S. H., Terlau H., Ludewig U., Lorra C., Pongs O., Stühmer W. Extracellular K+ specifically modulates a rat brain K+ channel. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2466–2470. doi: 10.1073/pnas.89.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payet M. D., Benabderrazik M., Gallo-Payet N. Excitation-secretion coupling: ionic currents in glomerulosa cells: effects of adrenocorticotropin and K+ channel blockers. Endocrinology. 1987 Sep;121(3):875–882. doi: 10.1210/endo-121-3-875. [DOI] [PubMed] [Google Scholar]
- Pralong W. F., Hunyady L., Várnai P., Wollheim C. B., Spät A. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):132–136. doi: 10.1073/pnas.89.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn S. J., Brauneis U., Tillotson D. L., Cornwall M. C., Williams G. H. Calcium channels and control of cytosolic calcium in rat and bovine zona glomerulosa cells. Am J Physiol. 1992 Mar;262(3 Pt 1):C598–C606. doi: 10.1152/ajpcell.1992.262.3.C598. [DOI] [PubMed] [Google Scholar]
- Quinn S. J., Cornwall M. C., Williams G. H. Electrical properties of isolated rat adrenal glomerulosa and fasciculata cells. Endocrinology. 1987 Mar;120(3):903–914. doi: 10.1210/endo-120-3-903. [DOI] [PubMed] [Google Scholar]
- Quinn S. J., Cornwall M. C., Williams G. H. Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology. 1987 Apr;120(4):1581–1589. doi: 10.1210/endo-120-4-1581. [DOI] [PubMed] [Google Scholar]
- Rossier M. F., Python C. P., Capponi A. M., Schlegel W., Kwan C. Y., Vallotton M. B. Blocking T-type calcium channels with tetrandrine inhibits steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology. 1993 Mar;132(3):1035–1043. doi: 10.1210/endo.132.3.8382595. [DOI] [PubMed] [Google Scholar]
- Spät A., Balla I., Balla T., Cragoe E. J., Jr, Hajnóczky G., Hunyady L. Angiotensin II and potassium activate different calcium entry mechanisms in rat adrenal glomerulosa cells. J Endocrinol. 1989 Jul;122(1):361–370. doi: 10.1677/joe.0.1220361. [DOI] [PubMed] [Google Scholar]
- Spät A., Enyedi P., Hajnóczky G., Hunyady L. Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol. 1991 Nov;76(6):859–885. doi: 10.1113/expphysiol.1991.sp003550. [DOI] [PubMed] [Google Scholar]