Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Feb 15;483(Pt 1):67–78. doi: 10.1113/jphysiol.1995.sp020568

Activation of calcium current in voltage-clamped rat glomerulosa cells by potassium ions.

P Várnai 1, O N Osipenko 1, E S Vizi 1, A Spät 1
PMCID: PMC1157872  PMID: 7776242

Abstract

1. We examined Ca2+ influx mechanisms using the whole-cell patch-clamp technique in primary cultures of rat glomerulosa cells. 2. Depolarization of the plasma membrane, as studied by a stepwise or ramp depolarization technique, activated low-threshold, transient (T-type) and high-threshold, long-lasting (L-type) voltage-dependent calcium channels (VDCCs). 3. Extracellular K+ activated an inward current (Ig1), even in voltage-clamped cells. This phenomenon was observed within the physiological concentration range, beginning at 4.6 mM K+o (as opposed to the control level of 3.6 mM K+o). Increased cell conductance and increased background noise indicated that Ig1 is evoked by enhanced channel activity. Potassium induced no outward current in the voltage range examined (-120 to +60 mV). 4. When non-permeable anions were present only in the pipette and Na+ and Mg2+ were omitted from the bath, K+ still activated the current. Ig1 was blocked by 100 microM cadmium but was insensitive to 2 microM nifedipine or to 300 microM Ni2+. 5. In fluorimetric studies elevation of the cytoplasmic Ca2+ concentration in response to K+ (5.6-13.6 mM) was reduced only partially when VDCCs were blocked with Ni2+ (200 microM) and nifedipine (2 microM). 6. Elevation of the K+ concentration shifted the threshold potential of the T-type calcium channel in the negative direction. 7. In summary, K+ as a ligand activates Ca(2+)-permeable channels in rat glomerulosa cells. This current may contribute to the development of Ca2+ signals in response to stimulation with K+ in the physiological range. The reduction of the activation threshold of the T-type current by K+ may also be of physiological significance.

Full text

PDF
67

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen C. J., McCarthy R. T., Barrett P. Q., Rasmussen H. Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2412–2416. doi: 10.1073/pnas.85.7.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Durroux T., Gallo-Payet N., Payet M. D. Three components of the calcium current in cultured glomerulosa cells from rat adrenal gland. J Physiol. 1988 Oct;404:713–729. doi: 10.1113/jphysiol.1988.sp017315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  4. Fasolato C., Hoth M., Matthews G., Penner R. Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3068–3072. doi: 10.1073/pnas.90.7.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frace A. M., Maruoka F., Noma A. External K+ increases Na+ conductance of the hyperpolarization-activated current in rabbit cardiac pacemaker cells. Pflugers Arch. 1992 Jun;421(2-3):97–99. [PubMed] [Google Scholar]
  6. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  7. Heinemann S. H., Conti F. Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol. 1992;207:131–148. doi: 10.1016/0076-6879(92)07009-d. [DOI] [PubMed] [Google Scholar]
  8. Hunyady L., Kayser S., Cragoe E. J., Jr, Balla I., Balla T., Spät A. Na+-H+ and Na+-Ca2+ exchange in glomerulosa cells: possible role in control of aldosterone production. Am J Physiol. 1988 Jun;254(6 Pt 1):C744–C750. doi: 10.1152/ajpcell.1988.254.6.C744. [DOI] [PubMed] [Google Scholar]
  9. Matsunaga H., Maruyama Y., Kojima I., Hoshi T. Transient Ca2+-channel current characterized by a low-threshold voltage in zona glomerulosa cells of rat adrenal cortex. Pflugers Arch. 1987 Apr;408(4):351–355. doi: 10.1007/BF00581128. [DOI] [PubMed] [Google Scholar]
  10. Matsunaga H., Yamashita N., Maruyama Y., Kojima I., Kurokawa K. Evidence for two distinct voltage-gated calcium channel currents in bovine adrenal glomerulosa cells. Biochem Biophys Res Commun. 1987 Dec 31;149(3):1049–1054. doi: 10.1016/0006-291x(87)90514-6. [DOI] [PubMed] [Google Scholar]
  11. McDonald T. V., Premack B. A., Gardner P. Flash photolysis of caged inositol 1,4,5-trisphosphate activates plasma membrane calcium current in human T cells. J Biol Chem. 1993 Feb 25;268(6):3889–3896. [PubMed] [Google Scholar]
  12. Pardo L. A., Heinemann S. H., Terlau H., Ludewig U., Lorra C., Pongs O., Stühmer W. Extracellular K+ specifically modulates a rat brain K+ channel. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2466–2470. doi: 10.1073/pnas.89.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Payet M. D., Benabderrazik M., Gallo-Payet N. Excitation-secretion coupling: ionic currents in glomerulosa cells: effects of adrenocorticotropin and K+ channel blockers. Endocrinology. 1987 Sep;121(3):875–882. doi: 10.1210/endo-121-3-875. [DOI] [PubMed] [Google Scholar]
  14. Pralong W. F., Hunyady L., Várnai P., Wollheim C. B., Spät A. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):132–136. doi: 10.1073/pnas.89.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quinn S. J., Brauneis U., Tillotson D. L., Cornwall M. C., Williams G. H. Calcium channels and control of cytosolic calcium in rat and bovine zona glomerulosa cells. Am J Physiol. 1992 Mar;262(3 Pt 1):C598–C606. doi: 10.1152/ajpcell.1992.262.3.C598. [DOI] [PubMed] [Google Scholar]
  16. Quinn S. J., Cornwall M. C., Williams G. H. Electrical properties of isolated rat adrenal glomerulosa and fasciculata cells. Endocrinology. 1987 Mar;120(3):903–914. doi: 10.1210/endo-120-3-903. [DOI] [PubMed] [Google Scholar]
  17. Quinn S. J., Cornwall M. C., Williams G. H. Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology. 1987 Apr;120(4):1581–1589. doi: 10.1210/endo-120-4-1581. [DOI] [PubMed] [Google Scholar]
  18. Rossier M. F., Python C. P., Capponi A. M., Schlegel W., Kwan C. Y., Vallotton M. B. Blocking T-type calcium channels with tetrandrine inhibits steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology. 1993 Mar;132(3):1035–1043. doi: 10.1210/endo.132.3.8382595. [DOI] [PubMed] [Google Scholar]
  19. Spät A., Balla I., Balla T., Cragoe E. J., Jr, Hajnóczky G., Hunyady L. Angiotensin II and potassium activate different calcium entry mechanisms in rat adrenal glomerulosa cells. J Endocrinol. 1989 Jul;122(1):361–370. doi: 10.1677/joe.0.1220361. [DOI] [PubMed] [Google Scholar]
  20. Spät A., Enyedi P., Hajnóczky G., Hunyady L. Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol. 1991 Nov;76(6):859–885. doi: 10.1113/expphysiol.1991.sp003550. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES