Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Apr 15;484(Pt 2):369–383. doi: 10.1113/jphysiol.1995.sp020671

Effects of inorganic phosphate on cross-bridge kinetics at different activation levels in skinned guinea-pig smooth muscle.

A Osterman 1, A Arner 1
PMCID: PMC1157900  PMID: 7602532

Abstract

1. The effects of inorganic phosphate (P(i)) on force, Ca(2+)-force relationship, ATPase activity, maximal shortening velocity (Vmax) and rate of tension development were investigated in chemically skinned preparations of smooth muscle from the guinea-pig taenia coli. 2. In maximally thiophosphorylated fibres, P(i) in the range 1-40 mM inhibited isometric force, with a reduction of 20% at 20 mM P(i). 3. The relative force was similar at all [Ca2+], i.e. the Ca(2+)-force relationship was not affected, when 20 mM P(i) was present. 4. After photolytic release of ATP from caged ATP in maximally thiophosphorylated fibres in the presence of 20 mM P(i), tension rose to a lower level but with a higher rate constant than in the absence of P(i). 5. Inorganic phosphate (20 mM) did not affect the ATP hydrolysis in fibres activated at intermediate [Ca2+] or by maximal thiophosphorylation. 6. Inorganic phosphate (20 mM) decreased force but did not influence Vmax in maximally activated fibres. At lower levels of activation by Ca2+, P(i) increased the Vmax and decreased force slightly without affecting the degree of myosin light chain phosphorylation. 7. We conclude that P(i) influences cross-bridge reactions associated with force generation in smooth muscle. These reactions are not rate limiting for cross-bridge turnover under isotonic or isometric conditions in maximally activated smooth muscle fibres, since P(i) did not influence Vmax or the rate of ATP turnover. 8. Since P(i) increased Vmax in submaximally activated muscles, we propose that, under these conditions, shortening velocity is rate limited by cross-bridge states, reached early after attachment, which impose a mechanical resistance to shortening.

Full text

PDF
369

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arheden H., Arner A. Effects of magnesium pyrophosphate on mechanical properties of skinned smooth muscle from the guinea pig taenia coli. Biophys J. 1992 Jun;61(6):1480–1494. doi: 10.1016/S0006-3495(92)81954-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arheden H., Arner A., Hellstrand P. Cross-bridge behaviour in skinned smooth muscle of the guinea-pig taenia coli at altered ionic strength. J Physiol. 1988 Sep;403:539–558. doi: 10.1113/jphysiol.1988.sp017263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arner A. Force-velocity relation in chemically skinned rat portal vein. Effects of Ca2+ and Mg2+. Pflugers Arch. 1983 Apr;397(1):6–12. doi: 10.1007/BF00585160. [DOI] [PubMed] [Google Scholar]
  4. Arner A., Goody R. S., Rapp G., Rüegg J. C. Relaxation of chemically skinned guinea pig taenia coli smooth muscle from rigor by photolytic release of adenosine-5'-triphosphate. J Muscle Res Cell Motil. 1987 Oct;8(5):377–385. doi: 10.1007/BF01578427. [DOI] [PubMed] [Google Scholar]
  5. Arner A., Hellstrand P. Effects of calcium and substrate on force-velocity relation and energy turnover in skinned smooth muscle of the guinea-pig. J Physiol. 1985 Mar;360:347–365. doi: 10.1113/jphysiol.1985.sp015621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crichton C. A., Taggart M. J., Wray S., Smith G. L. Effects of pH and inorganic phosphate on force production in alpha-toxin-permeabilized isolated rat uterine smooth muscle. J Physiol. 1993 Jun;465:629–645. doi: 10.1113/jphysiol.1993.sp019697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dillon P. F., Aksoy M. O., Driska S. P., Murphy R. A. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981 Jan 30;211(4481):495–497. doi: 10.1126/science.6893872. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  11. Gagelmann M., Güth K. Effect of inorganic phosphate on the Ca2+ sensitivity in skinned Taenia coli smooth muscle fibers. Comparison of tension, ATPase activity, and phosphorylation of the regulatory myosin light chains. Biophys J. 1987 Mar;51(3):457–463. doi: 10.1016/S0006-3495(87)83367-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hellstrand P., Arner A. Myosin light chain phosphorylation and the cross-bridge cycle at low substrate concentration in chemically skinned guinea pig Taenia coli. Pflugers Arch. 1985 Dec;405(4):323–328. doi: 10.1007/BF00595684. [DOI] [PubMed] [Google Scholar]
  13. Hellstrand P., Vogel H. J. Phosphagens and intracellular pH in intact rabbit smooth muscle studied by 31P-NMR. Am J Physiol. 1985 Mar;248(3 Pt 1):C320–C329. doi: 10.1152/ajpcell.1985.248.3.C320. [DOI] [PubMed] [Google Scholar]
  14. Hibberd M. G., Dantzig J. A., Trentham D. R., Goldman Y. E. Phosphate release and force generation in skeletal muscle fibers. Science. 1985 Jun 14;228(4705):1317–1319. doi: 10.1126/science.3159090. [DOI] [PubMed] [Google Scholar]
  15. Higuchi H., Takemori S. Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. J Biochem. 1989 Apr;105(4):638–643. doi: 10.1093/oxfordjournals.jbchem.a122717. [DOI] [PubMed] [Google Scholar]
  16. Itoh T., Kanmura Y., Kuriyama H. Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery. J Physiol. 1986 Jul;376:231–252. doi: 10.1113/jphysiol.1986.sp016151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawai M., Güth K., Winnikes K., Haist C., Rüegg J. C. The effect of inorganic phosphate on the ATP hydrolysis rate and the tension transients in chemically skinned rabbit psoas fibers. Pflugers Arch. 1987 Jan;408(1):1–9. doi: 10.1007/BF00581833. [DOI] [PubMed] [Google Scholar]
  18. Kawai M., Halvorson H. R. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J. 1991 Feb;59(2):329–342. doi: 10.1016/S0006-3495(91)82227-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kühn H., Tewes A., Gagelmann M., Güth K., Arner A., Rüegg J. C. Temporal relationship between force, ATPase activity, and myosin phosphorylation during a contraction/relaxation cycle in a skinned smooth muscle. Pflugers Arch. 1990 Jul;416(5):512–518. doi: 10.1007/BF00382683. [DOI] [PubMed] [Google Scholar]
  20. Millar N. C., Homsher E. Kinetics of force generation and phosphate release in skinned rabbit soleus muscle fibers. Am J Physiol. 1992 May;262(5 Pt 1):C1239–C1245. doi: 10.1152/ajpcell.1992.262.5.C1239. [DOI] [PubMed] [Google Scholar]
  21. Nishiye E., Somlyo A. V., Török K., Somlyo A. P. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol. 1993 Jan;460:247–271. doi: 10.1113/jphysiol.1993.sp019470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Osterman A., Arner A., Malmqvist U. Effects of 2,3-butanedione monoxime on activation of contraction and crossbridge kinetics in intact and chemically skinned smooth muscle fibres from guinea pig taenia coli. J Muscle Res Cell Motil. 1993 Apr;14(2):186–194. doi: 10.1007/BF00115453. [DOI] [PubMed] [Google Scholar]
  23. Rembold C. M., Murphy R. A. Models of the mechanism for crossbridge attachment in smooth muscle. J Muscle Res Cell Motil. 1993 Jun;14(3):325–334. doi: 10.1007/BF00123097. [DOI] [PubMed] [Google Scholar]
  24. Rüegg J. C., Schädler M., Steiger G. J., Müller G. Effects of inorganic phosphate on the contractile mechanism. Pflugers Arch. 1971;325(4):359–364. doi: 10.1007/BF00592176. [DOI] [PubMed] [Google Scholar]
  25. Schneider M., Sparrow M., Rüegg J. C. Inorganic phosphate promotes relaxation of chemically skinned smooth muscle of guinea-pig Taenia coli. Experientia. 1981;37(9):980–982. doi: 10.1007/BF01971791. [DOI] [PubMed] [Google Scholar]
  26. Sellers J. R., Eisenberg E., Adelstein R. S. The binding of smooth muscle heavy meromyosin to actin in the presence of ATP. Effect of phosphorylation. J Biol Chem. 1982 Dec 10;257(23):13880–13883. [PubMed] [Google Scholar]
  27. Sellers J. R. Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin. J Biol Chem. 1985 Dec 15;260(29):15815–15819. [PubMed] [Google Scholar]
  28. Siegman M. J., Butler T. M., Mooers S. U. Phosphatase inhibition with okadaic acid does not alter the relationship between force and myosin light chain phosphorylation in permeabilized smooth muscle. Biochem Biophys Res Commun. 1989 Jun 15;161(2):838–842. doi: 10.1016/0006-291x(89)92676-4. [DOI] [PubMed] [Google Scholar]
  29. Siemankowski R. F., Wiseman M. O., White H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658–662. doi: 10.1073/pnas.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sleep J. A., Hutton R. L. Exchange between inorganic phosphate and adenosine 5'-triphosphate in the medium by actomyosin subfragment 1. Biochemistry. 1980 Apr 1;19(7):1276–1283. doi: 10.1021/bi00548a002. [DOI] [PubMed] [Google Scholar]
  31. Somlyo A. V., Goldman Y. E., Fujimori T., Bond M., Trentham D. R., Somlyo A. P. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol. 1988 Feb;91(2):165–192. doi: 10.1085/jgp.91.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vogel H. J., Lilja H., Hellstrand P. Phosphorus-31 NMR studies of smooth muscle from guinea-pig taenia coli. Biosci Rep. 1983 Sep;3(9):863–870. doi: 10.1007/BF01133785. [DOI] [PubMed] [Google Scholar]
  33. Warshaw D. M., Desrosiers J. M., Work S. S., Trybus K. M. Effects of MgATP, MgADP, and Pi on actin movement by smooth muscle myosin. J Biol Chem. 1991 Dec 25;266(36):24339–24343. [PubMed] [Google Scholar]
  34. Warshaw D. M., Desrosiers J. M., Work S. S., Trybus K. M. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol. 1990 Aug;111(2):453–463. doi: 10.1083/jcb.111.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES