Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Apr 15;484(Pt 2):437–445. doi: 10.1113/jphysiol.1995.sp020676

The role of glutamate and GABA receptors in the generation of dorsal root reflexes by acute arthritis in the anaesthetized rat.

H Rees 1, K A Sluka 1, K N Westlund 1, W D Willis 1
PMCID: PMC1157905  PMID: 7602536

Abstract

1. In rats anaesthetized with pentobarbitone sodium, a unilateral acute arthritis was produced by the injection of kaolin and carrageenan into one knee-joint cavity. Four hours after injection, the medial articular nerve (MAN) was sectioned distally and recordings obtained from the proximal stump of the nerve. 2. Centrifugally conducted action potentials were recorded from the cut MAN following the development of arthritis. Acute dorsal rhizotomy, but not sympathectomy, prevented the action potentials, and so it is concluded that the action potentials represent dorsal root reflexes. 3. Central administration of either the GABAA receptor antagonist, bicuculline, or the non-NMDA receptor antagonist, CNQX, also prevented dorsal root reflexes in the MAN. 4. Neither the GABAB receptor antagonist, CGP35348, nor the NMDA receptor antagonist, AP7, altered the dorsal root reflexes in the MAN. 5. It is concluded that arthritis causes excess primary afferent depolarization in the dorsal horn of the spinal cord leading to dorsal root reflexes. It is proposed that these dorsal root reflexes contribute to the inflammation.

Full text

PDF
437

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelsson S., Björklund A., Falck B., Lindvall O., Svensson L. A. Glyoxylic acid condensation: a new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol Scand. 1973 Jan;87(1):57–62. doi: 10.1111/j.1748-1716.1973.tb05365.x. [DOI] [PubMed] [Google Scholar]
  2. Birrell G. J., McQueen D. S., Iggo A., Grubb B. D. Prostanoid-induced potentiation of the excitatory and sensitizing effects of bradykinin on articular mechanonociceptors in the rat ankle joint. Neuroscience. 1993 May;54(2):537–544. doi: 10.1016/0306-4522(93)90273-i. [DOI] [PubMed] [Google Scholar]
  3. Birrell G. J., McQueen D. S. The effects of capsaicin, bradykinin, PGE2 and cicaprost on the discharge of articular sensory receptors in vitro. Brain Res. 1993 May 14;611(1):103–107. doi: 10.1016/0006-8993(93)91781-m. [DOI] [PubMed] [Google Scholar]
  4. Burke R. E., Rudomin P., Vyklický L., Zajac F. E., 3rd Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin. J Physiol. 1971 Feb;213(1):185–214. doi: 10.1113/jphysiol.1971.sp009376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castro-Lopes J. M., Tavares I., Tölle T. R., Coimbra A. Carrageenan-induced inflammation of the hind foot provokes a rise of GABA-immunoreactive cells in the rat spinal cord that is prevented by peripheral neurectomy or neonatal capsaicin treatment. Pain. 1994 Feb;56(2):193–201. doi: 10.1016/0304-3959(94)90094-9. [DOI] [PubMed] [Google Scholar]
  6. Clifton G. L., Coggeshall R. E., Vance W. H., Willis W. D. Receptive fields of unmyelinated ventral root afferent fibres in the cat. J Physiol. 1976 Apr;256(3):573–600. doi: 10.1113/jphysiol.1976.sp011340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coggeshall R. E., Hong K. A., Langford L. A., Schaible H. G., Schmidt R. F. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res. 1983 Aug 1;272(1):185–188. doi: 10.1016/0006-8993(83)90379-7. [DOI] [PubMed] [Google Scholar]
  8. Colpaert F. C., Donnerer J., Lembeck F. Effects of capsaicin on inflammation and on the substance P content of nervous tissues in rats with adjuvant arthritis. Life Sci. 1983 Apr 18;32(16):1827–1834. doi: 10.1016/0024-3205(83)90060-7. [DOI] [PubMed] [Google Scholar]
  9. Curtis D. R., Lacey G. GABA-B receptor-mediated spinal inhibition. Neuroreport. 1994 Jan 31;5(5):540–542. doi: 10.1097/00001756-199401000-00002. [DOI] [PubMed] [Google Scholar]
  10. Curtis D. R., Lodge D. The depolarization of feline ventral horn group Ia spinal afferent terminations by GABA. Exp Brain Res. 1982;46(2):215–233. doi: 10.1007/BF00237180. [DOI] [PubMed] [Google Scholar]
  11. Dougherty P. M., Palecek J., Paleckova V., Sorkin L. S., Willis W. D. The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, chemical, thermal, and electrical stimuli. J Neurosci. 1992 Aug;12(8):3025–3041. doi: 10.1523/JNEUROSCI.12-08-03025.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dougherty P. M., Sluka K. A., Sorkin L. S., Westlund K. N., Willis W. D. Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Res Brain Res Rev. 1992 Jan-Apr;17(1):1–13. doi: 10.1016/0165-0173(92)90002-4. [DOI] [PubMed] [Google Scholar]
  13. ECCLES J. C., KOZAK W., MAGNI F. Dorsal root reflexes of muscle group I afferent fibres. J Physiol. 1961 Nov;159:128–146. doi: 10.1113/jphysiol.1961.sp006797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. ECCLES J. C., SCHMIDT R. F., WILLIS W. D. Presynaptic inhibition of the spinal monosynaptic reflex pathway. J Physiol. 1962 May;161:282–297. doi: 10.1113/jphysiol.1962.sp006886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans R. H., Long S. K. Primary afferent depolarization in the rat spinal cord is mediated by pathways utilising NMDA and non-NMDA receptors. Neurosci Lett. 1989 May 22;100(1-3):231–236. doi: 10.1016/0304-3940(89)90690-3. [DOI] [PubMed] [Google Scholar]
  16. Ferrell W. R., Russell N. J. Extravasation in the knee induced by antidromic stimulation of articular C fibre afferents of the anaesthetized cat. J Physiol. 1986 Oct;379:407–416. doi: 10.1113/jphysiol.1986.sp016260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hammond D. L., Washington J. D. Antagonism of L-baclofen-induced antinociception by CGP 35348 in the spinal cord of the rat. Eur J Pharmacol. 1993 Apr 6;234(2-3):255–262. doi: 10.1016/0014-2999(93)90961-g. [DOI] [PubMed] [Google Scholar]
  18. Heinemann U., Schaible H. G., Schmidt R. F. Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints. Exp Brain Res. 1990;79(2):283–292. doi: 10.1007/BF00608237. [DOI] [PubMed] [Google Scholar]
  19. Herbert M. K., Schmidt R. F. Activation of normal and inflamed fine articular afferent units by serotonin. Pain. 1992 Jul;50(1):79–88. doi: 10.1016/0304-3959(92)90115-R. [DOI] [PubMed] [Google Scholar]
  20. Jiménez I., Rudomin P., Solodkin M. Mechanisms involved in the depolarization of cutaneous afferents produced by segmental and descending inputs in the cat spinal cord. Exp Brain Res. 1987;69(1):195–207. doi: 10.1007/BF00247042. [DOI] [PubMed] [Google Scholar]
  21. Lam F. Y., Ferrell W. R. Acute inflammation in the rat knee joint attenuates sympathetic vasoconstriction but enhances neuropeptide-mediated vasodilatation assessed by laser Doppler perfusion imaging. Neuroscience. 1993 Jan;52(2):443–449. doi: 10.1016/0306-4522(93)90170-k. [DOI] [PubMed] [Google Scholar]
  22. Levine J. D., Dardick S. J., Roizen M. F., Helms C., Basbaum A. I. Contribution of sensory afferents and sympathetic efferents to joint injury in experimental arthritis. J Neurosci. 1986 Dec;6(12):3423–3429. doi: 10.1523/JNEUROSCI.06-12-03423.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rees H., Sluka K. A., Westlund K. N., Willis W. D. Do dorsal root reflexes augment peripheral inflammation? Neuroreport. 1994 Mar 21;5(7):821–824. doi: 10.1097/00001756-199403000-00021. [DOI] [PubMed] [Google Scholar]
  24. Schaible H. G., Jarrott B., Hope P. J., Duggan A. W. Release of immunoreactive substance P in the spinal cord during development of acute arthritis in the knee joint of the cat: a study with antibody microprobes. Brain Res. 1990 Oct 8;529(1-2):214–223. doi: 10.1016/0006-8993(90)90830-5. [DOI] [PubMed] [Google Scholar]
  25. Schaible H. G., Schmidt R. F. Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol. 1985 Nov;54(5):1109–1122. doi: 10.1152/jn.1985.54.5.1109. [DOI] [PubMed] [Google Scholar]
  26. Schaible H. G., Schmidt R. F., Willis W. D. Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp Brain Res. 1987;66(3):489–499. doi: 10.1007/BF00270681. [DOI] [PubMed] [Google Scholar]
  27. Skilling S. R., Smullin D. H., Beitz A. J., Larson A. A. Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J Neurochem. 1988 Jul;51(1):127–132. doi: 10.1111/j.1471-4159.1988.tb04845.x. [DOI] [PubMed] [Google Scholar]
  28. Sluka K. A., Jordan H. H., Westlund K. N. Reduction in joint swelling and hyperalgesia following post-treatment with a non-NMDA glutamate receptor antagonist. Pain. 1994 Oct;59(1):95–100. doi: 10.1016/0304-3959(94)90052-3. [DOI] [PubMed] [Google Scholar]
  29. Sluka K. A., Lawand N. B., Westlund K. N. Joint inflammation is reduced by dorsal rhizotomy and not by sympathectomy or spinal cord transection. Ann Rheum Dis. 1994 May;53(5):309–314. doi: 10.1136/ard.53.5.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sluka K. A., Westlund K. N. Behavioral and immunohistochemical changes in an experimental arthritis model in rats. Pain. 1993 Dec;55(3):367–377. doi: 10.1016/0304-3959(93)90013-F. [DOI] [PubMed] [Google Scholar]
  31. Sluka K. A., Westlund K. N. Centrally administered non-NMDA but not NMDA receptor antagonists block peripheral knee joint inflammation. Pain. 1993 Nov;55(2):217–225. doi: 10.1016/0304-3959(93)90150-N. [DOI] [PubMed] [Google Scholar]
  32. Sluka K. A., Westlund K. N. Spinal cord amino acid release and content in an arthritis model: the effects of pretreatment with non-NMDA, NMDA, and NK1 receptor antagonists. Brain Res. 1993 Nov 5;627(1):89–103. doi: 10.1016/0006-8993(93)90752-9. [DOI] [PubMed] [Google Scholar]
  33. Sluka K. A., Willis W. D., Westlund K. N. Joint inflammation and hyperalgesia are reduced by spinal bicuculline. Neuroreport. 1993 Nov 18;5(2):109–112. doi: 10.1097/00001756-199311180-00003. [DOI] [PubMed] [Google Scholar]
  34. Somjen G. G., Lothman E. W. Potassium, sustained focal potential shifts, and dorsal root potentials of the mammalian spinal cord. Brain Res. 1974 Mar 29;69(1):153–157. doi: 10.1016/0006-8993(74)90382-5. [DOI] [PubMed] [Google Scholar]
  35. Sorkin L. S., Westlund K. N., Sluka K. A., Dougherty P. M., Willis W. D. Neural changes in acute arthritis in monkeys. IV. Time-course of amino acid release into the lumbar dorsal horn. Brain Res Brain Res Rev. 1992 Jan-Apr;17(1):39–50. doi: 10.1016/0165-0173(92)90005-7. [DOI] [PubMed] [Google Scholar]
  36. Whitehorn D., Burgess P. R. Changes in polarization of central branches of myelinated mechanoreceptor and nociceptor fibers during noxious and innocuous stimulation of the skin. J Neurophysiol. 1973 Mar;36(2):226–237. doi: 10.1152/jn.1973.36.2.226. [DOI] [PubMed] [Google Scholar]
  37. Zimmermann M. Dorsal root potentials after C-fiber stimulation. Science. 1968 May 24;160(3830):896–898. doi: 10.1126/science.160.3830.896. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES