Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Apr 1;484(Pt 1):53–67. doi: 10.1113/jphysiol.1995.sp020647

The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation.

S Bialek 1, D P Joseph 1, S S Miller 1
PMCID: PMC1157921  PMID: 7602526

Abstract

1. Conventional and ion-selective double-barrelled microelectrodes were used in an in vitro preparation of bovine retinal pigment epithelium (RPE)-choroid to measure the changes in membrane voltage, resistance and intracellular Cl- activity (aCli) produced by small, physiological changes in extracellular potassium concentration ([K+]o). These apical [K+]o changes approximate those produced in the extracellular (subretinal) space between the photoreceptors and the RPE following transitions between light and dark. 2. Changing apical [K+]o from 5 to 2 mM in vitro elicited membrane voltage responses with three distinct phases. The first phase was generated by an apical membrane hyperpolarization, followed by a (delayed) basolateral membrane hyperpolarization (DBMH); the third phase was an apical membrane depolarization. The present experiments focus on the membrane and cellular mechanisms that generate phase 2 of the response, the DBMH. 3. The DBMH was abolished in the presence of apical bumetanide (100 microM); this response was completely restored after bumetanide removal. 4. Reducing apical [K+]o, adding apical bumetanide (500 mM), or removing apical Cl- decreased aCli by 25 +/- 6 (n = 8), 28 +/- 1 (n = 2) and 26 +/- 5 mM (n = 3), respectively; adding 100 microM apical bumetanide decreased aCli by 12 +/- 2 mM (n = 3). Adding apical bumetanide or removing apical bath Cl- hyperpolarized the basolateral membrane and decreased the apparent basolateral membrane conductance (GB). 5. DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid) blocked the RPE basolateral membrane Cl- conductance and inhibited the DBMH and the basolateral membrane hyperpolarization produced by apical bumetanide addition or by removal of apical Cl-o. The present results show that the DBMH is caused by delta[K]o-induced inhibition of the apical membrane Na(+)-K(+)-2Cl- cotransporter; the subsequent decrease in aCli generated a hyperpolarization at the basolateral membrane Cl- channel.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Welsh M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003–6007. doi: 10.1073/pnas.88.14.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biagi B. A. Effects of the anion transport inhibitor, SITS, on the proximal straight tubule of the rabbit perfused in vitro. J Membr Biol. 1985;88(1):25–31. doi: 10.1007/BF01871210. [DOI] [PubMed] [Google Scholar]
  3. Bialek S., Miller S. S. K+ and Cl- transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition. J Physiol. 1994 Mar 15;475(3):401–417. doi: 10.1113/jphysiol.1994.sp020081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dearry A., Burnside B. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium. J Neurochem. 1989 Sep;53(3):870–878. doi: 10.1111/j.1471-4159.1989.tb11785.x. [DOI] [PubMed] [Google Scholar]
  5. Edelman J. L., Miller S. S. Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1991 Nov;32(12):3033–3040. [PubMed] [Google Scholar]
  6. Gallemore R. P., Steinberg R. H. Light-evoked modulation of basolateral membrane Cl- conductance in chick retinal pigment epithelium: the light peak and fast oscillation. J Neurophysiol. 1993 Oct;70(4):1669–1680. doi: 10.1152/jn.1993.70.4.1669. [DOI] [PubMed] [Google Scholar]
  7. Garcia-Diaz J. F., Stump S., Armstrong W. M. Electronic device for microelectrode recordings in epithelial cells. Am J Physiol. 1984 Mar;246(3 Pt 1):C339–C346. doi: 10.1152/ajpcell.1984.246.3.C339. [DOI] [PubMed] [Google Scholar]
  8. García D. M., Burnside B. Suppression of cAMP-induced pigment granule aggregation in RPE by organic anion transport inhibitors. Invest Ophthalmol Vis Sci. 1994 Jan;35(1):178–188. [PubMed] [Google Scholar]
  9. Griff E. R. Potassium-evoked responses from the retinal pigment epithelium of the toad Bufo marinus. Exp Eye Res. 1991 Aug;53(2):219–228. doi: 10.1016/0014-4835(91)90077-r. [DOI] [PubMed] [Google Scholar]
  10. Griff E. R., Steinberg R. H. Changes in apical [K+] produce delayed basal membrane responses of the retinal pigment epithelium in the gecko. J Gen Physiol. 1984 Feb;83(2):193–211. doi: 10.1085/jgp.83.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Griff E. R., Steinberg R. H. Origin of the light peak: in vitro study of Gekko gekko. J Physiol. 1982 Oct;331:637–652. doi: 10.1113/jphysiol.1982.sp014395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughes B. A., Adorante J. S., Miller S. S., Lin H. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium. J Gen Physiol. 1989 Jul;94(1):125–150. doi: 10.1085/jgp.94.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inoue I. Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives. J Gen Physiol. 1985 Apr;85(4):519–537. doi: 10.1085/jgp.85.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jiang C., Finkbeiner W. E., Widdicombe J. H., McCray P. B., Jr, Miller S. S. Altered fluid transport across airway epithelium in cystic fibrosis. Science. 1993 Oct 15;262(5132):424–427. doi: 10.1126/science.8211164. [DOI] [PubMed] [Google Scholar]
  15. Joseph D. P., Miller S. S. Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium. J Gen Physiol. 1992 Feb;99(2):263–290. doi: 10.1085/jgp.99.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joseph D. P., Miller S. S. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol. 1991 Apr;435:439–463. doi: 10.1113/jphysiol.1991.sp018518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kenyon E., Yu K., La Cour M., Miller S. S. Lactate transport mechanisms at apical and basolateral membranes of bovine retinal pigment epithelium. Am J Physiol. 1994 Dec;267(6 Pt 1):C1561–C1573. doi: 10.1152/ajpcell.1994.267.6.C1561. [DOI] [PubMed] [Google Scholar]
  18. Lin H., Miller S. S. pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms. Am J Physiol. 1991 Jul;261(1 Pt 1):C132–C142. doi: 10.1152/ajpcell.1991.261.1.C132. [DOI] [PubMed] [Google Scholar]
  19. Lin H., Miller S. S. pHi-dependent Cl-HCO3 exchange at the basolateral membrane of frog retinal pigment epithelium. Am J Physiol. 1994 Apr;266(4 Pt 1):C935–C945. doi: 10.1152/ajpcell.1994.266.4.C935. [DOI] [PubMed] [Google Scholar]
  20. Linsenmeier R. A., Steinberg R. H. Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram. J Gen Physiol. 1984 Feb;83(2):213–232. doi: 10.1085/jgp.83.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linsenmeier R. A., Steinberg R. H. Origin and sensitivity of the light peak in the intact cat eye. J Physiol. 1982 Oct;331:653–673. doi: 10.1113/jphysiol.1982.sp014396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller S. S., Edelman J. L. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990 May;424:283–300. doi: 10.1113/jphysiol.1990.sp018067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
  24. Newman E. A. Membrane physiology of retinal glial (Müller) cells. J Neurosci. 1985 Aug;5(8):2225–2239. doi: 10.1523/JNEUROSCI.05-08-02225.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oakley B., 2nd, Miller S. S., Steinberg R. H. Effect of intracellular potassium upon the electrogenic pump of frog retinal pigment epithelium. J Membr Biol. 1978 Dec 29;44(3-4):281–307. doi: 10.1007/BF01944225. [DOI] [PubMed] [Google Scholar]
  26. Quinn R. H., Miller S. S. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992 Dec;33(13):3513–3527. [PubMed] [Google Scholar]
  27. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shimazaki H., Oakley B., 2nd Reaccumulation of [K+]o in the toad retina during maintained illumination. J Gen Physiol. 1984 Sep;84(3):475–504. doi: 10.1085/jgp.84.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steinberg R. H., Schmidt R., Brown K. T. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature. 1970 Aug 15;227(5259):728–730. doi: 10.1038/227728a0. [DOI] [PubMed] [Google Scholar]
  30. Stutts M. J., Chinet T. C., Mason S. J., Fullton J. M., Clarke L. L., Boucher R. C. Regulation of Cl- channels in normal and cystic fibrosis airway epithelial cells by extracellular ATP. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1621–1625. doi: 10.1073/pnas.89.5.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Valeton J. M., van Norren D. Intraretinal recordings of slow electrical responses to steady illumination in monkey: isolation of receptor responses and the origin of the light peak. Vision Res. 1982;22(3):393–399. doi: 10.1016/0042-6989(82)90155-9. [DOI] [PubMed] [Google Scholar]
  32. Weleber R. G. Fast and slow oscillations of the electro-oculogram in Best's macular dystrophy and retinitis pigmentosa. Arch Ophthalmol. 1989 Apr;107(4):530–537. doi: 10.1001/archopht.1989.01070010544028. [DOI] [PubMed] [Google Scholar]
  33. Yamamoto F., Borgula G. A., Steinberg R. H. Effects of light and darkness on pH outside rod photoreceptors in the cat retina. Exp Eye Res. 1992 May;54(5):685–697. doi: 10.1016/0014-4835(92)90023-l. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES