Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Apr 1;484(Pt 1):77–86. doi: 10.1113/jphysiol.1995.sp020649

Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride.

S Ebihara 1, K Shirato 1, N Harata 1, N Akaike 1
PMCID: PMC1157923  PMID: 7541464

Abstract

1. By the development of a new perforated patch method using gramicidin, the effects of GABA on neurones dissociated from the rat substantia nigra pars reticulata (SNR) were examined without disturbing the intracellular chloride concentration. 2. Using the patch pipette solution containing gramicidin (100 micrograms ml-1), the access resistance dropped to less than 20 M omega within 40 min after making the gigaohm seal. 3. Under current-clamp conditions, GABA caused a hyperpolarization accompanied by a blockade of spontaneous firing. Under voltage clamp at a holding potential (Vh) of -50 mV, GABA evoked an outward current by way of bicuculline- and picrotoxin-sensitive GABAA receptors. 4. A 10-fold change of extracellular chloride concentration resulted in a 58 mV shift of the reversal potential of GABA-induced outward current (EGABA), indicating that the membrane behaves like a chloride electrode in the presence of GABA. 5. The intracellular chloride activities (aCli), calculated with the Nernst equation using both extracellular chloride activity and EGABA values, ranged from 2.8 to 19.7 mM with a mean value of 9.5 mM. The aCli was not affected either by different pipette solutions or by different holding potentials more hyperpolarized than -40 mV. 6. In the recording from SNR neurones in brain slice using the gramicidin-perforated patch-clamp technique, the inhibitory and excitatory postsynaptic currents were recorded in different current directions and the former was blocked by bicuculline. 7. In conclusion, the gramicidin-perforated patch method will disclose previously unknown aspects of biological responses involving Cl-.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike N., Harata N. Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol. 1994;44(5):433–473. doi: 10.2170/jjphysiol.44.433. [DOI] [PubMed] [Google Scholar]
  2. Akaike N., Hattori K., Inomata N., Oomura Y. gamma-Aminobutyric-acid- and pentobarbitone-gated chloride currents in internally perfused frog sensory neurones. J Physiol. 1985 Mar;360:367–386. doi: 10.1113/jphysiol.1985.sp015622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akaike N., Kaneda M. Glycine-gated chloride current in acutely isolated rat hypothalamic neurons. J Neurophysiol. 1989 Dec;62(6):1400–1409. doi: 10.1152/jn.1989.62.6.1400. [DOI] [PubMed] [Google Scholar]
  4. Armstrong D. L., White R. E. An enzymatic mechanism for potassium channel stimulation through pertussis-toxin-sensitive G proteins. Trends Neurosci. 1992 Oct;15(10):403–408. doi: 10.1016/0166-2236(92)90192-b. [DOI] [PubMed] [Google Scholar]
  5. Ben-Ari Y., Cherubini E., Corradetti R., Gaiarsa J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol. 1989 Sep;416:303–325. doi: 10.1113/jphysiol.1989.sp017762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Curmi J. P., Premkumar L. S., Birnir B., Gage P. W. The influence of membrane potential on chloride channels activated by GABA in rat cultured hippocampal neurons. J Membr Biol. 1993 Dec;136(3):273–280. doi: 10.1007/BF00233666. [DOI] [PubMed] [Google Scholar]
  8. Deisz R. A., Lux H. D. The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones. J Physiol. 1982 May;326:123–138. doi: 10.1113/jphysiol.1982.sp014181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edwards F. A., Konnerth A., Sakmann B., Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989 Sep;414(5):600–612. doi: 10.1007/BF00580998. [DOI] [PubMed] [Google Scholar]
  10. Gerfen C. R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 1992 Apr;15(4):133–139. doi: 10.1016/0166-2236(92)90355-c. [DOI] [PubMed] [Google Scholar]
  11. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hagiwara S., Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol. 1982 Oct;331:231–252. doi: 10.1113/jphysiol.1982.sp014371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Hara M., Inoue M., Yasukura T., Ohnishi S., Mikami Y., Inagaki C. Uneven distribution of intracellular Cl- in rat hippocampal neurons. Neurosci Lett. 1992 Aug 31;143(1-2):135–138. doi: 10.1016/0304-3940(92)90250-b. [DOI] [PubMed] [Google Scholar]
  15. Higashijima T., Ferguson K. M., Sternweis P. C. Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride. J Biol Chem. 1987 Mar 15;262(8):3597–3602. [PubMed] [Google Scholar]
  16. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  17. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inoue M., Hara M., Zeng X. T., Hirose T., Ohnishi S., Yasukura T., Uriu T., Omori K., Minato A., Inagaki C. An ATP-driven Cl- pump regulates Cl- concentrations in rat hippocampal neurons. Neurosci Lett. 1991 Dec 16;134(1):75–78. doi: 10.1016/0304-3940(91)90512-r. [DOI] [PubMed] [Google Scholar]
  19. Ishibashi K., Sasaki S., Yoshiyama N. Intracellular chloride activity of rabbit proximal straight tubule perfused in vitro. Am J Physiol. 1988 Jul;255(1 Pt 2):F49–F56. doi: 10.1152/ajprenal.1988.255.1.F49. [DOI] [PubMed] [Google Scholar]
  20. Marty A., Finkelstein A. Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action. J Gen Physiol. 1975 Apr;65(4):515–526. doi: 10.1085/jgp.65.4.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McNiven A. I., Martin A. R. Effect of cytoplasmic chloride concentration on open-state preference of glycine-activated chloride channels in cultured spinal cord cells. J Neurophysiol. 1993 Mar;69(3):860–867. doi: 10.1152/jn.1993.69.3.860. [DOI] [PubMed] [Google Scholar]
  22. Myers V. B., Haydon D. A. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity. Biochim Biophys Acta. 1972 Aug 9;274(2):313–322. doi: 10.1016/0005-2736(72)90179-4. [DOI] [PubMed] [Google Scholar]
  23. Nakajima T., Sugimoto T., Kurachi Y. Effects of anions on the G protein-mediated activation of the muscarinic K+ channel in the cardiac atrial cell membrane. Intracellular chloride inhibition of the GTPase activity of GK. J Gen Physiol. 1992 May;99(5):665–682. doi: 10.1085/jgp.99.5.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakanishi H., Kita H., Kitai S. T. Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Res. 1987 Dec 22;437(1):45–55. doi: 10.1016/0006-8993(87)91525-3. [DOI] [PubMed] [Google Scholar]
  25. Petersen O. H. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992 Mar;448:1–51. doi: 10.1113/jphysiol.1992.sp019028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
  27. Verkman A. S. Development and biological applications of chloride-sensitive fluorescent indicators. Am J Physiol. 1990 Sep;259(3 Pt 1):C375–C388. doi: 10.1152/ajpcell.1990.259.3.C375. [DOI] [PubMed] [Google Scholar]
  28. Wakamori M., Hidaka H., Akaike N. Hyperpolarizing muscarinic responses of freshly dissociated rat hippocampal CA1 neurones. J Physiol. 1993 Apr;463:585–604. doi: 10.1113/jphysiol.1993.sp019612. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES