Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 May 15;485(Pt 1):257–269. doi: 10.1113/jphysiol.1995.sp020728

Excitability of human upper limb motoneurones during rhythmic discharge tested with transcranial magnetic stimulation.

E Olivier 1, P Bawa 1, R N Lemon 1
PMCID: PMC1157988  PMID: 7658379

Abstract

1. The activity of thirty-one single motor units (SMUs) was recorded from forearm and hand muscles of three volunteers. The excitability of the rhythmically firing motoneurones supplying these SMUs was examined after voluntary discharge using transcranial magnetic stimulation (TMS). 2. The magnetic stimulus was delivered either at a fixed delay (range: 1-60 ms) after SMU discharge (triggered mode) or at random with respect to voluntary SMU discharge (random mode). Post-stimulus time histograms (PSTHs) of responses to 50-100 stimuli were constructed for each experimental condition. 3. In the triggered mode, the probability of response to TMS progressively decreased as the spike-to-stimulus interval was shortened. Shortening of the interval also resulted in redistribution of responses within the different subpeaks characterizing the short-latency response of motor units to TMS: the relative response probability of the first subpeak decreased with the shorter spike-to-stimulus intervals. 4. In the triggered mode, the probability of SMU responding to TMS was significantly higher when the firing rate of the motor unit was increased from a slow rate (< 10 impulses s-1) to a faster rate (> 12 impulses s-1), irrespective of the spike-to-stimulus interval. In contrast, in the random mode, the response probability was greater at the slower discharge rate. 5. The higher excitability of motoneurones at the fast rate in the triggered mode is consistent with findings in cat motoneurones suggesting a shallower after-hyperpolarization, but other mechanisms could contribute. Furthermore, our results suggest that there is an asymptotic recovery in the excitability of slow firing motoneurones towards the end of the interspike interval.

Full text

PDF
257

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby P., Zilm D. Characteristics of postsynaptic potentials produced in single human motoneurons by homonymous group 1 volleys. Exp Brain Res. 1982;47(1):41–48. doi: 10.1007/BF00235884. [DOI] [PubMed] [Google Scholar]
  2. Baldissera F., Gustafsson B. Firing behaviour of a neurone model based on the afterhyperpolarization conductance time course and algebraical summation. Adaptation and steady state firing. Acta Physiol Scand. 1974 Sep;92(1):27–47. doi: 10.1111/j.1748-1716.1974.tb05720.x. [DOI] [PubMed] [Google Scholar]
  3. Barker A. T., Jalinous R., Freeston I. L. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985 May 11;1(8437):1106–1107. doi: 10.1016/s0140-6736(85)92413-4. [DOI] [PubMed] [Google Scholar]
  4. Bawa P., Lemon R. N. Recruitment of motor units in response to transcranial magnetic stimulation in man. J Physiol. 1993 Nov;471:445–464. doi: 10.1113/jphysiol.1993.sp019909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boniface S. J., Mills K. R., Schubert M. Responses of single spinal motoneurons to magnetic brain stimulation in healthy subjects and patients with multiple sclerosis. Brain. 1991 Feb;114(Pt 1B):643–662. doi: 10.1093/brain/114.1.643. [DOI] [PubMed] [Google Scholar]
  6. Brouwer B., Ashby P., Midroni G. Excitability of corticospinal neurons during tonic muscle contractions in man. Exp Brain Res. 1989;74(3):649–652. doi: 10.1007/BF00247369. [DOI] [PubMed] [Google Scholar]
  7. Brownstone R. M., Jordan L. M., Kriellaars D. J., Noga B. R., Shefchyk S. J. On the regulation of repetitive firing in lumbar motoneurones during fictive locomotion in the cat. Exp Brain Res. 1992;90(3):441–455. doi: 10.1007/BF00230927. [DOI] [PubMed] [Google Scholar]
  8. Burke D., Hicks R., Gandevia S. C., Stephen J., Woodforth I., Crawford M. Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation. J Physiol. 1993 Oct;470:383–393. doi: 10.1113/jphysiol.1993.sp019864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Calvin W. H. Generation of spike trains in CNS neurons. Brain Res. 1975 Jan 24;84(1):1–22. doi: 10.1016/0006-8993(75)90796-9. [DOI] [PubMed] [Google Scholar]
  10. Calvin W. H. Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res. 1974 Apr 5;69(2):341–346. doi: 10.1016/0006-8993(74)90012-2. [DOI] [PubMed] [Google Scholar]
  11. Cheney P. D., Fetz E. E. Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol. 1980 Oct;44(4):773–791. doi: 10.1152/jn.1980.44.4.773. [DOI] [PubMed] [Google Scholar]
  12. Day B. L., Dressler D., Maertens de Noordhout A., Marsden C. D., Nakashima K., Rothwell J. C., Thompson P. D. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989 May;412:449–473. doi: 10.1113/jphysiol.1989.sp017626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Day B. L., Riescher H., Struppler A., Rothwell J. C., Marsden C. D. Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J Physiol. 1991 Feb;433:41–57. doi: 10.1113/jphysiol.1991.sp018413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edgley S. A., Eyre J. A., Lemon R. N., Miller S. Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol. 1990 Jun;425:301–320. doi: 10.1113/jphysiol.1990.sp018104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ellaway P. H., Murthy K. S. The origins and characteristics of cross-correlated activity between gamma-motoneurones in the cat. Q J Exp Physiol. 1985 Apr;70(2):219–232. doi: 10.1113/expphysiol.1985.sp002905. [DOI] [PubMed] [Google Scholar]
  16. Ellaway P. H. The variability in discharge of fusimotor neurones in the decerebrate cat. Exp Brain Res. 1972;14(2):105–117. doi: 10.1007/BF00234794. [DOI] [PubMed] [Google Scholar]
  17. Evarts E. V., Fromm C., Kröller J., Jennings V. A. Motor Cortex control of finely graded forces. J Neurophysiol. 1983 May;49(5):1199–1215. doi: 10.1152/jn.1983.49.5.1199. [DOI] [PubMed] [Google Scholar]
  18. Flament D., Goldsmith P., Buckley C. J., Lemon R. N. Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol. 1993 May;464:361–378. doi: 10.1113/jphysiol.1993.sp019639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hess C. W., Mills K. R., Murray N. M. Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol. 1987 Jul;388:397–419. doi: 10.1113/jphysiol.1987.sp016621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katz R., Meunier S., Pierrot-Deseilligny E. Changes in presynaptic inhibition of Ia fibres in man while standing. Brain. 1988 Apr;111(Pt 2):417–437. doi: 10.1093/brain/111.2.417. [DOI] [PubMed] [Google Scholar]
  21. Kranz H., Baumgartner G. Human alpha motoneurone discharge, a statistical analysis. Brain Res. 1974 Feb 22;67(2):324–329. doi: 10.1016/0006-8993(74)90282-0. [DOI] [PubMed] [Google Scholar]
  22. Lemon R. N., Mantel G. W., Rea P. A. Recording and identification of single motor units in the free-to-move primate hand. Exp Brain Res. 1990;81(1):95–106. doi: 10.1007/BF00230105. [DOI] [PubMed] [Google Scholar]
  23. Maier M. A., Bennett K. M., Hepp-Reymond M. C., Lemon R. N. Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. J Neurophysiol. 1993 Mar;69(3):772–785. doi: 10.1152/jn.1993.69.3.772. [DOI] [PubMed] [Google Scholar]
  24. Mills K. R. Magnetic brain stimulation: a tool to explore the action of the motor cortex on single human spinal motoneurones. Trends Neurosci. 1991 Sep;14(9):401–405. doi: 10.1016/0166-2236(91)90029-t. [DOI] [PubMed] [Google Scholar]
  25. Piotrkiewicz M., Churikova L., Person R. Excitability of single firing human motoneurones to single and repetitive stimulation (experiment and model). Biol Cybern. 1992;66(3):253–259. doi: 10.1007/BF00198478. [DOI] [PubMed] [Google Scholar]
  26. Rothwell J. C., Thompson P. D., Day B. L., Boyd S., Marsden C. D. Stimulation of the human motor cortex through the scalp. Exp Physiol. 1991 Mar;76(2):159–200. doi: 10.1113/expphysiol.1991.sp003485. [DOI] [PubMed] [Google Scholar]
  27. Schwindt P. C., Calvin W. H. Membrane-potential trajectories between spikes underlying motoneuron firing rates. J Neurophysiol. 1972 May;35(3):311–325. doi: 10.1152/jn.1972.35.3.311. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES