Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jun 1;485(Pt 2):531–541. doi: 10.1113/jphysiol.1995.sp020749

Postnatal development of CO2-O2 interaction in the rat carotid body in vitro.

D R Pepper 1, R C Landauer 1, P Kumar 1
PMCID: PMC1158012  PMID: 7666372

Abstract

1. The effect of PCO2 upon the discharge response to changes in PO2 (between ca 450 and 30 mmHg) was observed in adult (> 5 weeks old) and neonatal (5-7 days old) rat carotid body chemoreceptors using an in vitro, superfused preparation. 2. In both adult and neonatal rats, regression analysis revealed that increasing PCO2 was without effect upon the shape of the PO2-response curves (P > 0.30), but did cause an upward shift in the position of the curves, as indicated by a significant increase in the baseline chemoreceptor discharge during hyperoxia (0.22 +/- 0.02% maximum discharge per mmHg PCO2, P < 0.001, and 0.25 +/- 0.07% maximum discharge per mmHg PCO2, P < 0.005, respectively). However, whilst increasing PCO2 caused a significant rightward shift of the response curves in adults (0.75 +/- 0.23 mmHg PO2 per mmHg PCO2; P < 0.005), it was without effect in neonates (0.21 +/- 0.22 mmHg PO2 per mmHg PCO2; P > 0.200). Thus increasing levels of hypoxia increased CO2 chemosensitivity in adult but not in neonatal rats as shown by multiple regression analysis of the CO2-response curves which revealed a significant interaction between PCO2 and PO2 for adult (P < 0.010) but not for neonatal (P > 0.150) rats. 3. We suggest that the previously reported maturation of peripheral chemoreceptor hypoxic sensitivity (resetting) may be due to the postnatal emergence of a significant degree of interaction between PCO2 and PO2 at the level of the peripheral chemoreceptor and/or its afferent innervation.

Full text

PDF
531

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acker H., Degner F., Hilsmann J. Local blood flow velocities in the carotid body of fetal sheep and newborn lambs. J Comp Physiol B. 1991;161(1):73–79. doi: 10.1007/BF00258749. [DOI] [PubMed] [Google Scholar]
  2. Acker H., Lübbers D. W., Purves M. J., Tan E. D. Measurements of the partial pressure of oxygen in the carotid body of fetal sheep and newborn lambs. J Dev Physiol. 1980 Oct;2(5):323–328. [PubMed] [Google Scholar]
  3. Albersheim S., Boychuk R., Seshia M. M., Cates D., Rigatto H. Effects of CO2 on immediate ventilatory response to O2 in preterm infants. J Appl Physiol. 1976 Nov;41(5 Pt 1):609–611. doi: 10.1152/jappl.1976.41.5.609. [DOI] [PubMed] [Google Scholar]
  4. Biscoe T. J., Duchen M. R. Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J Physiol. 1990 Sep;428:39–59. doi: 10.1113/jphysiol.1990.sp018199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blanco C. E., Dawes G. S., Hanson M. A., McCooke H. B. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol. 1984 Jun;351:25–37. doi: 10.1113/jphysiol.1984.sp015229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buckler K. J., Vaughan-Jones R. D. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. J Physiol. 1994 Jul 1;478(Pt 1):157–171. doi: 10.1113/jphysiol.1994.sp020239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buckler K. J., Vaughan-Jones R. D. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol. 1994 May 1;476(3):423–428. doi: 10.1113/jphysiol.1994.sp020143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burger R. E., Estavillo J. A., Kumar P., Nye P. C., Paterson D. J. Effects of potassium, oxygen and carbon dioxide on the steady-state discharge of cat carotid body chemoreceptors. J Physiol. 1988 Jul;401:519–531. doi: 10.1113/jphysiol.1988.sp017176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carroll J. L., Bamford O. S., Fitzgerald R. S. Postnatal maturation of carotid chemoreceptor responses to O2 and CO2 in the cat. J Appl Physiol (1985) 1993 Dec;75(6):2383–2391. doi: 10.1152/jappl.1993.75.6.2383. [DOI] [PubMed] [Google Scholar]
  10. Clarke J. A., de Burgh Daly M., Ead H. W. Comparison of the size of the vascular compartment of the carotid body of the fetal, neonatal and adult cat. Acta Anat (Basel) 1990;138(2):166–174. doi: 10.1159/000146934. [DOI] [PubMed] [Google Scholar]
  11. Delpiano M. A., Hescheler J. Evidence for a PO2-sensitive K+ channel in the type-I cell of the rabbit carotid body. FEBS Lett. 1989 Jun 5;249(2):195–198. doi: 10.1016/0014-5793(89)80623-4. [DOI] [PubMed] [Google Scholar]
  12. Donnelly D. F., Doyle T. P. Developmental changes in hypoxia-induced catecholamine release from rat carotid body, in vitro. J Physiol. 1994 Mar 1;475(2):267–275. doi: 10.1113/jphysiol.1994.sp020067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eden G. J., Hanson M. A. Maturation of the respiratory response to acute hypoxia in the newborn rat. J Physiol. 1987 Nov;392:1–9. doi: 10.1113/jphysiol.1987.sp016765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fitzgerald R. S., Parks D. C. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol. 1971 Jun;12(2):218–229. doi: 10.1016/0034-5687(71)90054-5. [DOI] [PubMed] [Google Scholar]
  15. Guthrie R. D., LaFramboise W. A., Standaert T. A., Van Belle G., Woodrum D. E. Ventilatory interaction between oxygen and carbon dioxide in the preterm primate. Pediatr Res. 1985 Jun;19(6):528–533. doi: 10.1203/00006450-198506000-00005. [DOI] [PubMed] [Google Scholar]
  16. Guthrie R. D., Standaert T. A., Hodson W. A., Woodrum D. E. Sleep and maturation of eucapnic ventilation and CO2 sensitivity in the premature primate. J Appl Physiol Respir Environ Exerc Physiol. 1980 Feb;48(2):347–354. doi: 10.1152/jappl.1980.48.2.347. [DOI] [PubMed] [Google Scholar]
  17. Hertzberg T., Hellström S., Lagercrantz H., Pequignot J. M. Development of the arterial chemoreflex and turnover of carotid body catecholamines in the newborn rat. J Physiol. 1990 Jun;425:211–225. doi: 10.1113/jphysiol.1990.sp018099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kholwadwala D., Donnelly D. F. Maturation of carotid chemoreceptor sensitivity to hypoxia: in vitro studies in the newborn rat. J Physiol. 1992;453:461–473. doi: 10.1113/jphysiol.1992.sp019239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kumar P., Hanson M. A. Re-setting of the hypoxic sensitivity of aortic chemoreceptors in the new-born lamb. J Dev Physiol. 1989 Apr;11(4):199–206. [PubMed] [Google Scholar]
  20. LLOYD B. B., JUKES M. G., CUNNINGHAM D. J. The relation between alveolar oxygen pressure and the respiratory response to carbon dioxide in man. Q J Exp Physiol Cogn Med Sci. 1958 Apr;43(2):214–227. doi: 10.1113/expphysiol.1958.sp001319. [DOI] [PubMed] [Google Scholar]
  21. Lahiri S., DeLaney R. G. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir Physiol. 1975 Sep;24(3):249–266. doi: 10.1016/0034-5687(75)90017-1. [DOI] [PubMed] [Google Scholar]
  22. López-López J., González C., Ureña J., López-Barneo J. Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body. J Gen Physiol. 1989 May;93(5):1001–1015. doi: 10.1085/jgp.93.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marchal F., Bairam A., Haouzi P., Crance J. P., Di Giulio C., Vert P., Lahiri S. Carotid chemoreceptor response to natural stimuli in the newborn kitten. Respir Physiol. 1992 Feb;87(2):183–193. doi: 10.1016/0034-5687(92)90058-5. [DOI] [PubMed] [Google Scholar]
  24. Moore P. J., Clarke J. A., Hanson M. A., Daly M. D., Ead H. W. Quantitative studies of the vasculature of the carotid body in fetal and newborn sheep. J Dev Physiol. 1991 Apr;15(4):211–214. [PubMed] [Google Scholar]
  25. NIELSEN M., SMITH H. Studies on the regulation of respiration in acute hypoxia; with a appendix on respiratory control during prolonged hypoxia. Acta Physiol Scand. 1952 Feb 12;24(4):293–313. doi: 10.1111/j.1748-1716.1952.tb00847.x. [DOI] [PubMed] [Google Scholar]
  26. Paterson D. J. Potassium and ventilation in exercise. J Appl Physiol (1985) 1992 Mar;72(3):811–820. doi: 10.1152/jappl.1992.72.3.811. [DOI] [PubMed] [Google Scholar]
  27. Peers C. Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current. Neurosci Lett. 1990 Nov 13;119(2):253–256. doi: 10.1016/0304-3940(90)90846-2. [DOI] [PubMed] [Google Scholar]
  28. Rigatto H., Brady J. P., de la Torre Verduzco R. Chemoreceptor reflexes in preterm infants: II. The effect of gestational and postnatal age on the ventilatory response to inhaled carbon dioxide. Pediatrics. 1975 May;55(5):614–620. [PubMed] [Google Scholar]
  29. Rigatto H., De La Torre Verduzco R., Gates D. B. Effects of O2 on the ventilatory response to CO2 in preterm infants. J Appl Physiol. 1975 Dec;39(6):896–899. doi: 10.1152/jappl.1975.39.6.896. [DOI] [PubMed] [Google Scholar]
  30. Rocher A., Obeso A., Gonzalez C., Herreros B. Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J Physiol. 1991 Feb;433:533–548. doi: 10.1113/jphysiol.1991.sp018442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Torrance R. W., Bartels E. M., McLaren A. J. Update on the bicarbonate hypothesis. Adv Exp Med Biol. 1993;337:241–250. doi: 10.1007/978-1-4615-2966-8_34. [DOI] [PubMed] [Google Scholar]
  32. Williams B. A., Smyth J., Boon A. W., Hanson M. A., Kumar P., Blanco C. E. Development of respiratory chemoreflexes in response to alternations of fractional inspired oxygen in the newborn infant. J Physiol. 1991 Oct;442:81–90. doi: 10.1113/jphysiol.1991.sp018783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wolsink J. G., Berkenbosch A., DeGoede J., Olievier C. N. The effects of hypoxia on the ventilatory response to sudden changes in CO2 in newborn piglets. J Physiol. 1992 Oct;456:39–48. doi: 10.1113/jphysiol.1992.sp019325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES