Abstract
1. Whole-cell patch clamp recording was used to study an ATP-sensitive, sulphonylurea-inhibitable potassium (K+) conductance in freshly dissociated endothelial cells from rabbit arteries. 2. The ATP-sensitive K+ conductance was activated by micromolar concentrations of the K+ channel opener, levcromakalim, and by metabolic inhibition of endothelial cells using dinitrophenol and iodoacetic acid. The current-voltage (I-V) relationship obtained in isotonic K+ solutions was linear between -150 and -50 mV and had a slope conductance of approximately 1 nS. 3. The permeability of the ATP-sensitive K+ conductance determined from reversal potential measurements exhibited the following ionic selectivity sequence: Rb+ > K+ > Cs+ >> Na+ > NH4+ > Li+. 4. Membrane currents activated by either levcromakalim or metabolic inhibition were inhibited by the sulphonylurea drugs, glibenclamide and tolbutamide, with half-maximal inhibitory concentrations of 43 nM and 224 microM and Hill coefficients of 1.1 and 1.2, respectively. Levcromakalim-induced currents were also inhibited by millimolar concentrations of Ba2+ or tetraethylammonium ions in the external solution. 5. Levcromakalim (3 microM) and metabolic inhibition hyperpolarized endothelial cells by approximately 10-15 mV in normal physiological salt solutions. The hyperpolarization induced by levcromakalim or metabolic inhibition was inhibited by bath application of 10 microM glibenclamide. 6. Internal perfusion of the cytosol of whole-cell voltage-clamped endothelial cells with an ATP-free pipette solution activated a membrane current which was reversibly inhibited by internal perfusion with a 3 mM MgATP pipette solution. This current was insensitive to other adenine and guanine nucleotides in the pipette solution. The inward current evoked in a nominally ATP-free internal solution was further increased by bath application of levcromakalim. 7. Levcromakalim (25 microM) did not induce a change in the intracellular Ca2+ concentration of fura-2-loaded endothelial cells, whereas metabolic inhibition caused a slow and sustained increase in intracellular Ca2+ concentration, which was attenuated by 10 microM glibenclamide applied externally.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF![595](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/71b48b8e806a/jphysiol00320-0020.png)
![596](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/35b4991e961e/jphysiol00320-0021.png)
![597](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/5bc9592696a0/jphysiol00320-0022.png)
![598](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/2e94611af1ab/jphysiol00320-0023.png)
![599](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/952ba6e54d5f/jphysiol00320-0024.png)
![600](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/2ae8fa625738/jphysiol00320-0025.png)
![601](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/c516faf09ee7/jphysiol00320-0026.png)
![602](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/bc9601f6274d/jphysiol00320-0027.png)
![603](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/97247cf0dbdb/jphysiol00320-0028.png)
![604](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/1cf45754af7e/jphysiol00320-0029.png)
![605](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/ca3b1d122a3c/jphysiol00320-0030.png)
![606](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ee/1158030/f996787ecd7f/jphysiol00320-0031.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
- Arnould T., Michiels C., Alexandre I., Remacle J. Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. J Cell Physiol. 1992 Jul;152(1):215–221. doi: 10.1002/jcp.1041520127. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Ashcroft F. M. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2(3):197–214. doi: 10.1016/0898-6568(90)90048-f. [DOI] [PubMed] [Google Scholar]
- Cannell M. B., Sage S. O. Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol. 1989 Dec;419:555–568. doi: 10.1113/jphysiol.1989.sp017886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clapp L. H., Davey R., Gurney A. M. ATP-sensitive K+ channels mediate vasodilation produced by lemakalim in rabbit pulmonary artery. Am J Physiol. 1993 Jun;264(6 Pt 2):H1907–H1915. doi: 10.1152/ajpheart.1993.264.6.H1907. [DOI] [PubMed] [Google Scholar]
- Clapp L. H., Gurney A. M. ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. Am J Physiol. 1992 Mar;262(3 Pt 2):H916–H920. doi: 10.1152/ajpheart.1992.262.3.H916. [DOI] [PubMed] [Google Scholar]
- Daut J., Maier-Rudolph W., von Beckerath N., Mehrke G., Günther K., Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science. 1990 Mar 16;247(4948):1341–1344. doi: 10.1126/science.2107575. [DOI] [PubMed] [Google Scholar]
- Edwards G., Weston A. H. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol. 1993;33:597–637. doi: 10.1146/annurev.pa.33.040193.003121. [DOI] [PubMed] [Google Scholar]
- Findlay I., Dunne M. J. ATP maintains ATP-inhibited K+ channels in an operational state. Pflugers Arch. 1986 Aug;407(2):238–240. doi: 10.1007/BF00580683. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Himmel H. M., Whorton A. R., Strauss H. C. Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension. 1993 Jan;21(1):112–127. doi: 10.1161/01.hyp.21.1.112. [DOI] [PubMed] [Google Scholar]
- Hutcheson I. R., Griffith T. M. Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta. Am J Physiol. 1994 Feb;266(2 Pt 2):H590–H596. doi: 10.1152/ajpheart.1994.266.2.H590. [DOI] [PubMed] [Google Scholar]
- Janigro D., West G. A., Gordon E. L., Winn H. R. ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol. 1993 Sep;265(3 Pt 1):C812–C821. doi: 10.1152/ajpcell.1993.265.3.C812. [DOI] [PubMed] [Google Scholar]
- Johns A., Lategan T. W., Lodge N. J., Ryan U. S., Van Breemen C., Adams D. J. Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue Cell. 1987;19(6):733–745. doi: 10.1016/0040-8166(87)90015-2. [DOI] [PubMed] [Google Scholar]
- Laskey R. E., Adams D. J., Johns A., Rubanyi G. M., van Breemen C. Membrane potential and Na(+)-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria. J Biol Chem. 1990 Feb 15;265(5):2613–2619. [PubMed] [Google Scholar]
- Ling B. N., O'Neill W. C. Ca(2+)-dependent and Ca(2+)-permeable ion channels in aortic endothelial cells. Am J Physiol. 1992 Dec;263(6 Pt 2):H1827–H1838. doi: 10.1152/ajpheart.1992.263.6.H1827. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Busse R. Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jul;342(1):94–99. doi: 10.1007/BF00178979. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Busse R. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch. 1990 May;416(3):305–311. doi: 10.1007/BF00392067. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Pohl U., Mülsch A., Busse R. Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol. 1988 Sep;95(1):189–196. doi: 10.1111/j.1476-5381.1988.tb16564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehrke G., Pohl U., Daut J. Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium. J Physiol. 1991 Aug;439:277–299. doi: 10.1113/jphysiol.1991.sp018667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson D. J., Jow B., Jow F. Whole-cell currents in macrophages: I. Human monocyte-derived macrophages. J Membr Biol. 1990 Jul;117(1):29–44. doi: 10.1007/BF01871563. [DOI] [PubMed] [Google Scholar]
- Olesen S. P., Bundgaard M. ATP-dependent closure and reactivation of inward rectifier K+ channels in endothelial cells. Circ Res. 1993 Sep;73(3):492–495. doi: 10.1161/01.res.73.3.492. [DOI] [PubMed] [Google Scholar]
- Rae J., Cooper K., Gates P., Watsky M. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods. 1991 Mar;37(1):15–26. doi: 10.1016/0165-0270(91)90017-t. [DOI] [PubMed] [Google Scholar]
- Richards J. M., Gibson I. F., Martin W. Effects of hypoxia and metabolic inhibitors on production of prostacyclin and endothelium-derived relaxing factor by pig aortic endothelial cells. Br J Pharmacol. 1991 Jan;102(1):203–209. doi: 10.1111/j.1476-5381.1991.tb12154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubanyi G. M., Vanhoutte P. M. Potassium-induced release of endothelium-derived relaxing factor from canine femoral arteries. Circ Res. 1988 Jun;62(6):1098–1103. doi: 10.1161/01.res.62.6.1098. [DOI] [PubMed] [Google Scholar]
- Rusko J., Tanzi F., van Breemen C., Adams D. J. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block. J Physiol. 1992 Sep;455:601–621. doi: 10.1113/jphysiol.1992.sp019318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilling W. P. Effect of membrane potential on cytosolic calcium of bovine aortic endothelial cells. Am J Physiol. 1989 Sep;257(3 Pt 2):H778–H784. doi: 10.1152/ajpheart.1989.257.3.H778. [DOI] [PubMed] [Google Scholar]
- Sheppard D. N., Welsh M. J. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol. 1992 Oct;100(4):573–591. doi: 10.1085/jgp.100.4.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Breemen C., Wuytack F., Casteels R., Martinelli B., Campailla E., Ferrari G. Stimulation of 45Ca efflux from smooth muscle cells by metabolic inhibition and high K depolarization. Pflugers Arch. 1975 Sep 9;359(3):183–196. doi: 10.1007/BF00587378. [DOI] [PubMed] [Google Scholar]
- Xu X., Lee K. S. Characterization of the ATP-inhibited K+ current in canine coronary smooth muscle cells. Pflugers Arch. 1994 May;427(1-2):110–120. doi: 10.1007/BF00585949. [DOI] [PubMed] [Google Scholar]