Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jun 15;485(Pt 3):607–617. doi: 10.1113/jphysiol.1995.sp020756

Coincidence of early glucose-induced depolarization with lowering of cytoplasmic Ca2+ in mouse pancreatic beta-cells.

R H Chow 1, P E Lund 1, S Löser 1, U Panten 1, E Gylfe 1
PMCID: PMC1158031  PMID: 7562604

Abstract

1. The temporal relationship between the early glucose-induced changes of membrane potential and cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in insulin-releasing pancreatic beta-cells. 2. The mean resting membrane potential and [Ca2+]i were about -70 mV and 60 nM, respectively, in 3 mM glucose. 3. Elevating the glucose concentration to 8-23 mM typically elicited a slow depolarization, which was paralleled by a lowering of [Ca2+]i. When the slow depolarization had reached a threshold of -55 to -40 mV, there was rapid further depolarization to a plateau with superimposed action potentials, and [Ca2+]i increased dramatically. 4. Imposing hyperpolarizations and depolarizations of 10 mV from a holding potential of -70 mV had no detectable effect on [Ca2+]i. Furthermore, glucose elevation elicited a decrease in [Ca2+]i even at a holding potential of -70 mV. 5. Step depolarizations induced [Ca2+]i transients, which decayed with time courses well fitted by double exponentials. The slower component became faster by a factor of about 4 upon elevation of glucose, suggesting involvement of ATP-dependent Ca2+ sequestration or extrusion of [Ca2+]i. 6. Glucose stimulation increased the size and accelerated the recovery of carbachol-triggered [Ca2+]i transients, and thapsigargin, an intracellular Ca(2+)-ATPase inhibitor, counteracted the glucose-induced lowering of [Ca2+]i, indicating that calcium transport into intracellular stores is involved in glucose-induced lowering of [Ca2+]i. 7. The results support the notion that in beta-cells, nutrient-induced elevation of ATP leads initially to ATP-dependent removal of Ca2+ from the cytoplasm, paralleled by a slow depolarization due to inhibition of ATP-sensitive K+ channels. Only after depolarization has reached a threshold do action potentials occur, inducing a sharp elevation in [Ca2+]i.

Full text

PDF
607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkhammar P., Nilsson T., Rorsman P., Berggren P. O. Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells. J Biol Chem. 1987 Apr 25;262(12):5448–5454. [PubMed] [Google Scholar]
  2. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  3. Bergsten P., Gylfe E., Wesslén N., Hellman B. Diazoxide unmasks glucose inhibition of insulin release by counteracting entry of Ca2+. Am J Physiol. 1988 Oct;255(4 Pt 1):E422–E427. doi: 10.1152/ajpendo.1988.255.4.E422. [DOI] [PubMed] [Google Scholar]
  4. Bergsten P., Hellman B. Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes. 1993 May;42(5):670–674. doi: 10.2337/diab.42.5.670. [DOI] [PubMed] [Google Scholar]
  5. Gilon P., Henquin J. C. Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem. 1992 Oct 15;267(29):20713–20720. [PubMed] [Google Scholar]
  6. Grapengiesser E., Gylfe E., Hellman B. Dual effect of glucose on cytoplasmic Ca2+ in single pancreatic beta-cells. Biochem Biophys Res Commun. 1988 Jan 15;150(1):419–425. doi: 10.1016/0006-291x(88)90537-2. [DOI] [PubMed] [Google Scholar]
  7. Grapengiesser E., Gylfe E., Hellman B. Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1299–1304. doi: 10.1016/s0006-291x(88)80503-5. [DOI] [PubMed] [Google Scholar]
  8. Grapengiesser E., Gylfe E., Hellman B. Three types of cytoplasmic Ca2+ oscillations in stimulated pancreatic beta-cells. Arch Biochem Biophys. 1989 Jan;268(1):404–407. doi: 10.1016/0003-9861(89)90602-4. [DOI] [PubMed] [Google Scholar]
  9. Gylfe E. Carbachol induces sustained glucose-dependent oscillations of cytoplasmic Ca2+ in hyperpolarized pancreatic beta cells. Pflugers Arch. 1991 Dec;419(6):639–643. doi: 10.1007/BF00370308. [DOI] [PubMed] [Google Scholar]
  10. Gylfe E. Glucose-induced buffering of cytoplasmic Ca2+ in the pancreatic beta-cell--an artifact or a physiological phenomenon? Biochem Biophys Res Commun. 1989 Mar 31;159(3):907–912. doi: 10.1016/0006-291x(89)92194-3. [DOI] [PubMed] [Google Scholar]
  11. Gylfe E. Glucose-induced early changes in cytoplasmic calcium of pancreatic beta-cells studied with time-sharing dual-wavelength fluorometry. J Biol Chem. 1988 Apr 15;263(11):5044–5048. [PubMed] [Google Scholar]
  12. Gylfe E. Nutrient secretagogues induce bimodal early changes in cytoplasmic calcium of insulin-releasing ob/ob mouse beta-cells. J Biol Chem. 1988 Sep 25;263(27):13750–13754. [PubMed] [Google Scholar]
  13. Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965 Oct 8;131(1):541–558. doi: 10.1111/j.1749-6632.1965.tb34819.x. [DOI] [PubMed] [Google Scholar]
  14. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Larsson R., Akerström G., Gylfe E., Johansson H., Ljunghall S., Rastad J., Wallfelt C. Paradoxical effects of K+ and D-600 on parathyroid hormone secretion and cytoplasmic Ca2+ in normal bovine and pathological human parathyroid cells. Biochim Biophys Acta. 1985 Nov 20;847(2):263–269. doi: 10.1016/0167-4889(85)90029-1. [DOI] [PubMed] [Google Scholar]
  16. Lund P. E., Gylfe E., Hellman B. Leucine induces initial lowering of cytoplasmic Ca2+ in pancreatic beta-cells without concomitant inhibition of insulin release. Biochem Int. 1989 Jul;19(1):83–87. [PubMed] [Google Scholar]
  17. Neher E. The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J Physiol. 1988 Jan;395:193–214. doi: 10.1113/jphysiol.1988.sp016914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nilsson T., Arkhammar P., Berggren P. O. Dual effect of glucose on cytoplasmic free Ca2+ concentration and insulin release reflects the beta-cell being deprived of fuel. Biochem Biophys Res Commun. 1988 Jun 30;153(3):984–991. doi: 10.1016/s0006-291x(88)81325-1. [DOI] [PubMed] [Google Scholar]
  19. Panten U., Biermann J., Graen W. Recognition of insulin-releasing fuels by pancreatic B-cells: alpha-ketoisocaproic acid is an appropriate model compound to study the role of B-cell metabolism. Mol Pharmacol. 1981 Jul;20(1):76–82. [PubMed] [Google Scholar]
  20. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  21. Roe M. W., Mertz R. J., Lancaster M. E., Worley J. F., 3rd, Dukes I. D. Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans. Am J Physiol. 1994 Jun;266(6 Pt 1):E852–E862. doi: 10.1152/ajpendo.1994.266.6.E852. [DOI] [PubMed] [Google Scholar]
  22. Rorsman P., Ammälä C., Berggren P. O., Bokvist K., Larsson O. Cytoplasmic calcium transients due to single action potentials and voltage-clamp depolarizations in mouse pancreatic B-cells. EMBO J. 1992 Aug;11(8):2877–2884. doi: 10.1002/j.1460-2075.1992.tb05356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rossier M. F., Python C. P., Burnay M. M., Schlegel W., Vallotton M. B., Capponi A. M. Thapsigargin inhibits voltage-activated calcium channels in adrenal glomerulosa cells. Biochem J. 1993 Dec 1;296(Pt 2):309–312. doi: 10.1042/bj2960309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith P. A., Ashcroft F. M., Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett. 1990 Feb 12;261(1):187–190. doi: 10.1016/0014-5793(90)80667-8. [DOI] [PubMed] [Google Scholar]
  25. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Theler J. M., Mollard P., Guérineau N., Vacher P., Pralong W. F., Schlegel W., Wollheim C. B. Video imaging of cytosolic Ca2+ in pancreatic beta-cells stimulated by glucose, carbachol, and ATP. J Biol Chem. 1992 Sep 5;267(25):18110–18117. [PubMed] [Google Scholar]
  27. Wang J. L., McDaniel M. L. Secretagogue-induced oscillations of cytoplasmic Ca2+ in single beta and alpha-cells obtained from pancreatic islets by fluorescence-activated cell sorting. Biochem Biophys Res Commun. 1990 Jan 30;166(2):813–818. doi: 10.1016/0006-291x(90)90882-n. [DOI] [PubMed] [Google Scholar]
  28. Wollheim C. B., Biden T. J. Signal transduction in insulin secretion: comparison between fuel stimuli and receptor agonists. Ann N Y Acad Sci. 1986;488:317–333. doi: 10.1111/j.1749-6632.1986.tb46568.x. [DOI] [PubMed] [Google Scholar]
  29. Worley J. F., 3rd, McIntyre M. S., Spencer B., Mertz R. J., Roe M. W., Dukes I. D. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. J Biol Chem. 1994 May 20;269(20):14359–14362. [PubMed] [Google Scholar]
  30. Yada T., Kakei M., Tanaka H. Single pancreatic beta-cells from normal rats exhibit an initial decrease and subsequent increase in cytosolic free Ca2+ in response to glucose. Cell Calcium. 1992 Jan;13(1):69–76. doi: 10.1016/0143-4160(92)90031-m. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES