Abstract
1. The temporal relationship between the early glucose-induced changes of membrane potential and cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in insulin-releasing pancreatic beta-cells. 2. The mean resting membrane potential and [Ca2+]i were about -70 mV and 60 nM, respectively, in 3 mM glucose. 3. Elevating the glucose concentration to 8-23 mM typically elicited a slow depolarization, which was paralleled by a lowering of [Ca2+]i. When the slow depolarization had reached a threshold of -55 to -40 mV, there was rapid further depolarization to a plateau with superimposed action potentials, and [Ca2+]i increased dramatically. 4. Imposing hyperpolarizations and depolarizations of 10 mV from a holding potential of -70 mV had no detectable effect on [Ca2+]i. Furthermore, glucose elevation elicited a decrease in [Ca2+]i even at a holding potential of -70 mV. 5. Step depolarizations induced [Ca2+]i transients, which decayed with time courses well fitted by double exponentials. The slower component became faster by a factor of about 4 upon elevation of glucose, suggesting involvement of ATP-dependent Ca2+ sequestration or extrusion of [Ca2+]i. 6. Glucose stimulation increased the size and accelerated the recovery of carbachol-triggered [Ca2+]i transients, and thapsigargin, an intracellular Ca(2+)-ATPase inhibitor, counteracted the glucose-induced lowering of [Ca2+]i, indicating that calcium transport into intracellular stores is involved in glucose-induced lowering of [Ca2+]i. 7. The results support the notion that in beta-cells, nutrient-induced elevation of ATP leads initially to ATP-dependent removal of Ca2+ from the cytoplasm, paralleled by a slow depolarization due to inhibition of ATP-sensitive K+ channels. Only after depolarization has reached a threshold do action potentials occur, inducing a sharp elevation in [Ca2+]i.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arkhammar P., Nilsson T., Rorsman P., Berggren P. O. Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells. J Biol Chem. 1987 Apr 25;262(12):5448–5454. [PubMed] [Google Scholar]
- Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
- Bergsten P., Gylfe E., Wesslén N., Hellman B. Diazoxide unmasks glucose inhibition of insulin release by counteracting entry of Ca2+. Am J Physiol. 1988 Oct;255(4 Pt 1):E422–E427. doi: 10.1152/ajpendo.1988.255.4.E422. [DOI] [PubMed] [Google Scholar]
- Bergsten P., Hellman B. Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets. Diabetes. 1993 May;42(5):670–674. doi: 10.2337/diab.42.5.670. [DOI] [PubMed] [Google Scholar]
- Gilon P., Henquin J. C. Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem. 1992 Oct 15;267(29):20713–20720. [PubMed] [Google Scholar]
- Grapengiesser E., Gylfe E., Hellman B. Dual effect of glucose on cytoplasmic Ca2+ in single pancreatic beta-cells. Biochem Biophys Res Commun. 1988 Jan 15;150(1):419–425. doi: 10.1016/0006-291x(88)90537-2. [DOI] [PubMed] [Google Scholar]
- Grapengiesser E., Gylfe E., Hellman B. Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic beta-cell. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1299–1304. doi: 10.1016/s0006-291x(88)80503-5. [DOI] [PubMed] [Google Scholar]
- Grapengiesser E., Gylfe E., Hellman B. Three types of cytoplasmic Ca2+ oscillations in stimulated pancreatic beta-cells. Arch Biochem Biophys. 1989 Jan;268(1):404–407. doi: 10.1016/0003-9861(89)90602-4. [DOI] [PubMed] [Google Scholar]
- Gylfe E. Carbachol induces sustained glucose-dependent oscillations of cytoplasmic Ca2+ in hyperpolarized pancreatic beta cells. Pflugers Arch. 1991 Dec;419(6):639–643. doi: 10.1007/BF00370308. [DOI] [PubMed] [Google Scholar]
- Gylfe E. Glucose-induced buffering of cytoplasmic Ca2+ in the pancreatic beta-cell--an artifact or a physiological phenomenon? Biochem Biophys Res Commun. 1989 Mar 31;159(3):907–912. doi: 10.1016/0006-291x(89)92194-3. [DOI] [PubMed] [Google Scholar]
- Gylfe E. Glucose-induced early changes in cytoplasmic calcium of pancreatic beta-cells studied with time-sharing dual-wavelength fluorometry. J Biol Chem. 1988 Apr 15;263(11):5044–5048. [PubMed] [Google Scholar]
- Gylfe E. Nutrient secretagogues induce bimodal early changes in cytoplasmic calcium of insulin-releasing ob/ob mouse beta-cells. J Biol Chem. 1988 Sep 25;263(27):13750–13754. [PubMed] [Google Scholar]
- Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965 Oct 8;131(1):541–558. doi: 10.1111/j.1749-6632.1965.tb34819.x. [DOI] [PubMed] [Google Scholar]
- Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsson R., Akerström G., Gylfe E., Johansson H., Ljunghall S., Rastad J., Wallfelt C. Paradoxical effects of K+ and D-600 on parathyroid hormone secretion and cytoplasmic Ca2+ in normal bovine and pathological human parathyroid cells. Biochim Biophys Acta. 1985 Nov 20;847(2):263–269. doi: 10.1016/0167-4889(85)90029-1. [DOI] [PubMed] [Google Scholar]
- Lund P. E., Gylfe E., Hellman B. Leucine induces initial lowering of cytoplasmic Ca2+ in pancreatic beta-cells without concomitant inhibition of insulin release. Biochem Int. 1989 Jul;19(1):83–87. [PubMed] [Google Scholar]
- Neher E. The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J Physiol. 1988 Jan;395:193–214. doi: 10.1113/jphysiol.1988.sp016914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson T., Arkhammar P., Berggren P. O. Dual effect of glucose on cytoplasmic free Ca2+ concentration and insulin release reflects the beta-cell being deprived of fuel. Biochem Biophys Res Commun. 1988 Jun 30;153(3):984–991. doi: 10.1016/s0006-291x(88)81325-1. [DOI] [PubMed] [Google Scholar]
- Panten U., Biermann J., Graen W. Recognition of insulin-releasing fuels by pancreatic B-cells: alpha-ketoisocaproic acid is an appropriate model compound to study the role of B-cell metabolism. Mol Pharmacol. 1981 Jul;20(1):76–82. [PubMed] [Google Scholar]
- Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
- Roe M. W., Mertz R. J., Lancaster M. E., Worley J. F., 3rd, Dukes I. D. Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans. Am J Physiol. 1994 Jun;266(6 Pt 1):E852–E862. doi: 10.1152/ajpendo.1994.266.6.E852. [DOI] [PubMed] [Google Scholar]
- Rorsman P., Ammälä C., Berggren P. O., Bokvist K., Larsson O. Cytoplasmic calcium transients due to single action potentials and voltage-clamp depolarizations in mouse pancreatic B-cells. EMBO J. 1992 Aug;11(8):2877–2884. doi: 10.1002/j.1460-2075.1992.tb05356.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossier M. F., Python C. P., Burnay M. M., Schlegel W., Vallotton M. B., Capponi A. M. Thapsigargin inhibits voltage-activated calcium channels in adrenal glomerulosa cells. Biochem J. 1993 Dec 1;296(Pt 2):309–312. doi: 10.1042/bj2960309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. A., Ashcroft F. M., Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett. 1990 Feb 12;261(1):187–190. doi: 10.1016/0014-5793(90)80667-8. [DOI] [PubMed] [Google Scholar]
- Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theler J. M., Mollard P., Guérineau N., Vacher P., Pralong W. F., Schlegel W., Wollheim C. B. Video imaging of cytosolic Ca2+ in pancreatic beta-cells stimulated by glucose, carbachol, and ATP. J Biol Chem. 1992 Sep 5;267(25):18110–18117. [PubMed] [Google Scholar]
- Wang J. L., McDaniel M. L. Secretagogue-induced oscillations of cytoplasmic Ca2+ in single beta and alpha-cells obtained from pancreatic islets by fluorescence-activated cell sorting. Biochem Biophys Res Commun. 1990 Jan 30;166(2):813–818. doi: 10.1016/0006-291x(90)90882-n. [DOI] [PubMed] [Google Scholar]
- Wollheim C. B., Biden T. J. Signal transduction in insulin secretion: comparison between fuel stimuli and receptor agonists. Ann N Y Acad Sci. 1986;488:317–333. doi: 10.1111/j.1749-6632.1986.tb46568.x. [DOI] [PubMed] [Google Scholar]
- Worley J. F., 3rd, McIntyre M. S., Spencer B., Mertz R. J., Roe M. W., Dukes I. D. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. J Biol Chem. 1994 May 20;269(20):14359–14362. [PubMed] [Google Scholar]
- Yada T., Kakei M., Tanaka H. Single pancreatic beta-cells from normal rats exhibit an initial decrease and subsequent increase in cytosolic free Ca2+ in response to glucose. Cell Calcium. 1992 Jan;13(1):69–76. doi: 10.1016/0143-4160(92)90031-m. [DOI] [PubMed] [Google Scholar]