Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jun 15;485(Pt 3):671–682. doi: 10.1113/jphysiol.1995.sp020761

Characterization of a volume-sensitive chloride current in rat osteoblast-like (ROS 17/2.8) cells.

M Gosling 1, J W Smith 1, D R Poyner 1
PMCID: PMC1158036  PMID: 7562609

Abstract

1. During osmotic swelling, cultured osteoblastic cells (ROS 17/2.8) exhibited activation of large amplitude Cl- currents in the whole-cell configuration of the patch-clamp technique. Effects of hypotonic shock on cell volume and membrane conductance were rapidly reversed on return to isotonic conditions. 2. Voltage command pulses in the range -80 to +50 mV produce instantaneous activation of Cl- currents. At potentials more positive than +50 mV the current exhibited time-dependent inactivation. The instantaneous current-voltage relationship was outwardly rectifying. 3. The anion permeability sequence of the induced current was SCN- (2.2) > i- (1.9) > Br- (1.5) > Cl- (1.0) > F- (0.8) > gluconate- (0.2). This corresponds to Eisenman's sequence I. 4. The volume-sensitive Cl- current was effectively inhibited by the Cl- channel blockers 4,4'- diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). Outward currents were more effectively suppressed by DIDS than inward currents. The concentrations for 50% inhibition (IC50) of outward and inward currents were 81 and 298 microM, respectively. NPPB was equally effective at inhibiting outward and inward currents (IC50 of 64 microM). The current was relatively insensitive to diphenylamine-2-carboxylate (DPC), 500 microM producing only 22.5 +/- 4.0% inhibition. 5. Inhibitors of protein kinase A (H-89, 1 microM) and tyrosine kinase (tyrphostin A25, 200 microM) were without effect upon activation of Cl- currents in response to hypotonic shock. Under isotonic conditions, elevation of intracellular Ca2+ by ionomycin (1 microM) or activation of protein kinase C by 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.1 microM) failed to evoke increases in basal Cl- conductance levels. 6. It is concluded that an outwardly rectifying Cl- conductance is activated upon osmotic swelling and may be involved in cell volume regulation of ROS 17/2.8 cells.

Full text

PDF
671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alton E. W., Williams A. J. Modification of gating of an airway epithelial chloride channel by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). J Membr Biol. 1992 Jun;128(2):141–151. doi: 10.1007/BF00231887. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. P., Welsh M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003–6007. doi: 10.1073/pnas.88.14.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baquet A., Meijer A. J., Hue L. Hepatocyte swelling increases inositol 1,4,5-trisphosphate, calcium and cyclic AMP concentration but antagonizes phosphorylase activation by Ca2(+)-dependent hormones. FEBS Lett. 1991 Jan 14;278(1):103–106. doi: 10.1016/0014-5793(91)80094-j. [DOI] [PubMed] [Google Scholar]
  4. Chan H. C., Fu W. O., Chung Y. W., Huang S. J., Zhou T. S., Wong P. Y. Characterization of a swelling-induced chloride conductance in cultured rat epididymal cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C997–1005. doi: 10.1152/ajpcell.1993.265.4.C997. [DOI] [PubMed] [Google Scholar]
  5. Chan H. C., Goldstein J., Nelson D. J. Alternate pathways for chloride conductance activation in normal and cystic fibrosis airway epithelial cells. Am J Physiol. 1992 May;262(5 Pt 1):C1273–C1283. doi: 10.1152/ajpcell.1992.262.5.C1273. [DOI] [PubMed] [Google Scholar]
  6. Chesnoy-Marchais D., Fritsch J. Chloride current activated by cyclic AMP and parathyroid hormone in rat osteoblasts. Pflugers Arch. 1989 Oct;415(1):104–114. doi: 10.1007/BF00373147. [DOI] [PubMed] [Google Scholar]
  7. Christensen O. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature. 1987 Nov 5;330(6143):66–68. doi: 10.1038/330066a0. [DOI] [PubMed] [Google Scholar]
  8. Davidson R. M. Membrane stretch activates a high-conductance K+ channel in G292 osteoblastic-like cells. J Membr Biol. 1993 Jan;131(1):81–92. doi: 10.1007/BF02258536. [DOI] [PubMed] [Google Scholar]
  9. Davidson R. M., Tatakis D. W., Auerbach A. L. Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch. 1990 Aug;416(6):646–651. doi: 10.1007/BF00370609. [DOI] [PubMed] [Google Scholar]
  10. Dixon S. J., Aubin J. E., Dainty J. Electrophysiology of a clonal osteoblast-like cell line: evidence for the existence of a Ca2+-activated K+ conductance. J Membr Biol. 1984;80(1):49–58. doi: 10.1007/BF01868689. [DOI] [PubMed] [Google Scholar]
  11. Duncan R., Misler S. Voltage-activated and stretch-activated Ba2+ conducting channels in an osteoblast-like cell line (UMR 106). FEBS Lett. 1989 Jul 17;251(1-2):17–21. doi: 10.1016/0014-5793(89)81420-6. [DOI] [PubMed] [Google Scholar]
  12. Díaz M., Valverde M. A., Higgins C. F., Rucăreanu C., Sepúlveda F. V. Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pflugers Arch. 1993 Jan;422(4):347–353. doi: 10.1007/BF00374290. [DOI] [PubMed] [Google Scholar]
  13. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ferrier J., Ward-Kesthely A., Homble F., Ross S. Further analysis of spontaneous membrane potential activity and the hyperpolarizing response to parathyroid hormone in osteoblastlike cells. J Cell Physiol. 1987 Mar;130(3):344–351. doi: 10.1002/jcp.1041300306. [DOI] [PubMed] [Google Scholar]
  15. Greger R. Chloride channel blockers. Methods Enzymol. 1990;191:793–810. doi: 10.1016/0076-6879(90)91048-b. [DOI] [PubMed] [Google Scholar]
  16. Grinstein S., Foskett J. K. Ionic mechanisms of cell volume regulation in leukocytes. Annu Rev Physiol. 1990;52:399–414. doi: 10.1146/annurev.ph.52.030190.002151. [DOI] [PubMed] [Google Scholar]
  17. Guggino S. E., Lajeunesse D., Wagner J. A., Snyder S. H. Bone remodeling signaled by a dihydropyridine- and phenylalkylamine-sensitive calcium channel. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2957–2960. doi: 10.1073/pnas.86.8.2957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  19. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  20. Kubo M., Okada Y. Volume-regulatory Cl- channel currents in cultured human epithelial cells. J Physiol. 1992 Oct;456:351–371. doi: 10.1113/jphysiol.1992.sp019340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lindskog S., Blomlöf L., Hammarström L. Comparative effects of parathyroid hormone on osteoblasts and cementoblasts. J Clin Periodontol. 1987 Aug;14(7):386–389. doi: 10.1111/j.1600-051x.1987.tb01541.x. [DOI] [PubMed] [Google Scholar]
  22. Majeska R. J., Rodan S. B., Rodan G. A. Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology. 1980 Nov;107(5):1494–1503. doi: 10.1210/endo-107-5-1494. [DOI] [PubMed] [Google Scholar]
  23. Miller S. S., Wolf A. M., Arnaud C. D. Bone cells in culture: morphologic transformation by hormones. Science. 1976 Jun 25;192(4246):1340–1343. doi: 10.1126/science.1273593. [DOI] [PubMed] [Google Scholar]
  24. Ravesloot J. H., Van Houten R. J., Ypey D. L., Nijweide P. J. High-conductance anion channels in embryonic chick osteogenic cells. J Bone Miner Res. 1991 Apr;6(4):355–363. doi: 10.1002/jbmr.5650060407. [DOI] [PubMed] [Google Scholar]
  25. Sandy J. R., Meghji S., Farndale R. W., Meikle M. C. Dual elevation of cyclic AMP and inositol phosphates in response to mechanical deformation of murine osteoblasts. Biochim Biophys Acta. 1989 Feb 9;1010(2):265–269. doi: 10.1016/0167-4889(89)90171-7. [DOI] [PubMed] [Google Scholar]
  26. Solc C. K., Wine J. J. Swelling-induced and depolarization-induced C1-channels in normal and cystic fibrosis epithelial cells. Am J Physiol. 1991 Oct;261(4 Pt 1):C658–C674. doi: 10.1152/ajpcell.1991.261.4.C658. [DOI] [PubMed] [Google Scholar]
  27. Tilly B. C., van den Berghe N., Tertoolen L. G., Edixhoven M. J., de Jonge H. R. Protein tyrosine phosphorylation is involved in osmoregulation of ionic conductances. J Biol Chem. 1993 Sep 25;268(27):19919–19922. [PubMed] [Google Scholar]
  28. Valverde M. A., Díaz M., Sepúlveda F. V., Gill D. R., Hyde S. C., Higgins C. F. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature. 1992 Feb 27;355(6363):830–833. doi: 10.1038/355830a0. [DOI] [PubMed] [Google Scholar]
  29. Watson P. A. Direct stimulation of adenylate cyclase by mechanical forces in S49 mouse lymphoma cells during hyposmotic swelling. J Biol Chem. 1990 Apr 25;265(12):6569–6575. [PubMed] [Google Scholar]
  30. Worrell R. T., Butt A. G., Cliff W. H., Frizzell R. A. A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol. 1989 Jun;256(6 Pt 1):C1111–C1119. doi: 10.1152/ajpcell.1989.256.6.C1111. [DOI] [PubMed] [Google Scholar]
  31. Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]
  32. Yamaguchi D. T., Green J., Kleeman C. R., Muallem S. Characterization of volume-sensitive, calcium-permeating pathways in the osteosarcoma cell line UMR-106-01. J Biol Chem. 1989 Mar 15;264(8):4383–4390. [PubMed] [Google Scholar]
  33. Yamaguchi D. T., Hahn T. J., Iida-Klein A., Kleeman C. R., Muallem S. Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. cAMP-dependent and cAMP-independent calcium channels. J Biol Chem. 1987 Jun 5;262(16):7711–7718. [PubMed] [Google Scholar]
  34. Ypey D. L., Weidema A. F., Höld K. M., Van der Laarse A., Ravesloot J. H., Van Der Plas A., Nijweide P. J. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells. J Bone Miner Res. 1992 Dec;7 (Suppl 2):S377–S387. doi: 10.1002/jbmr.5650071404. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES