Abstract
1. Simulations were performed using a model for cellular cyclic AMP metabolism involving a hormone-activated adenylate cyclase and two cyclic nucleotide phosphodiesterases with different Michaelis constants. 2. The response curves of cyclic AMP concentration as a function of hormone concentration were affected by regulating the phosphodiesterases. The maximum velocity of the high-affinity phosphodiesterase (V1) was important in determining the position of the response curve; when v1 was less than the maximal activity of adenylate cyclase (Vc), sigmoid response curves were readily produced. The maximum attainable concentration of cyclic AMP was determined primarily by V1 when Vc less than V1, and primarily by the activity of the low-affinity enzyme when Vc greater than V1 (V2 much greater than Vc in all cases). 3. The glucagon-stimulated adenylate cyclase and insulin-stimulated phosphodiesterase of the rat liver plasma membrane were simulated using experimentally determined values for the enzyme-kinetic parameters, and a considerable potential for regulation of the system by insulin was demonstrated. 4. Other possible functions for the regulation of phosphodiesterases are considered, in particular the value of increasing the speed of response to decreases in hormone concentration.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan E. H., Sneyd J. G. An effect of glucagon on 3', 5'-cyclic AMP phosphodiesterase activity in isolated rat hepatocytes. Biochem Biophys Res Commun. 1975 Feb 3;62(3):594–601. doi: 10.1016/0006-291x(75)90440-4. [DOI] [PubMed] [Google Scholar]
- Arch J. R., Newsholme E. A. Activities and some properties of adenylate cyclase and phosphodiesterase in muscle, liver and nervous tissues from vertebrates and invertebrates in relation to the control of the concentration of adenosine 3':5'-cyclic monophosphate. Biochem J. 1976 Sep 15;158(3):603–622. doi: 10.1042/bj1580603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beavo J. A., Hardman J. G., Sutherland E. W. Stimulation of adenosine 3',5'-monophosphate hydrolysis by guanosine 3',5'-monophosphate. J Biol Chem. 1971 Jun 25;246(12):3841–3846. [PubMed] [Google Scholar]
- Boeynaems J. M., Van Sande J., Pochet R., Dumont J. E. The relation between adenylate cyclase activation and cAMP acculumation in the horse thyroid gland stimulated by thyrotropin. Mol Cell Endocrinol. 1974 Apr;1(2):139–155. doi: 10.1016/0303-7207(74)90006-9. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y. Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun. 1970 Feb 6;38(3):533–538. doi: 10.1016/0006-291x(70)90747-3. [DOI] [PubMed] [Google Scholar]
- Correze C., Auclair R., Nunez J. Cyclic nucleotide phosphodiesterases, insulin and thyroid hormones. Mol Cell Endocrinol. 1976 Jun-Jul;5(1-2):67–79. doi: 10.1016/0303-7207(76)90071-x. [DOI] [PubMed] [Google Scholar]
- Davies J. I., Williams P. A. Quantitative aspects of the regulation of cellular cyclic AMP levels. I. Structure and kinetics of a model system. J Theor Biol. 1975 Sep;53(1):1–30. doi: 10.1016/0022-5193(75)90100-9. [DOI] [PubMed] [Google Scholar]
- Erneux C., Boeynaems J. M., Dumont J. E. Theoretical analysis of the consequences of cyclic nucleotide phosphodiesterase negative co-operativity. Amplification and positive co-operativity of cyclic AMP accumulation. Biochem J. 1980 Oct 15;192(1):241–246. doi: 10.1042/bj1920241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fell D. A. Theoretical analyses of the functioning of the high- and low-Km cyclic nucleotide phosphodiesterases in the regulation of the concentration of adenosine 3',5'-cyclic monophosphate in animal cells. J Theor Biol. 1980 May 21;84(2):361–385. doi: 10.1016/s0022-5193(80)80011-7. [DOI] [PubMed] [Google Scholar]
- Hill A. V. The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. I. Biochem J. 1913 Oct;7(5):471–480. doi: 10.1042/bj0070471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houslay M. D., Dipple I., Elliott K. R. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase. Biochem J. 1980 Mar 15;186(3):649–658. doi: 10.1042/bj1860649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loten E. G., Assimacopoulos-Jeannet F. D., Exton J. H., Park C. R. Stimulation of a low Km phosphodiesterase from liver by insulin and glucagon. J Biol Chem. 1978 Feb 10;253(3):746–757. [PubMed] [Google Scholar]
- Loten E. G., Sneyd J. G. An effect of insulin on adipose-tissue adenosine 3':5'-cyclic monophosphate phosphodiesterase. Biochem J. 1970 Nov;120(1):187–193. doi: 10.1042/bj1200187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malbon C. C., Fain J. N. Insulin stimulation of particulate, low Km adenosine 3',5'-monophosphate phosphodiesterase activity in fat cells of the obese-hyperglycemic (ob/ob) mouse. J Cyclic Nucleotide Res. 1977 Oct;3(5):315–323. [PubMed] [Google Scholar]
- Marchmont R. J., Ayad S. R., Houslay M. D. Purification and properties of the insulin-stimulated cyclic AMP phosphodiesterase from rat liver plasma membranes. Biochem J. 1981 Jun 1;195(3):645–652. doi: 10.1042/bj1950645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. Characterization of the phosphorylated form of the insulin-stimulated cyclic AMP phosphodiesterase from rat liver plasma membranes. Biochem J. 1981 Jun 1;195(3):653–660. doi: 10.1042/bj1950653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. Insulin trigger, cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature. 1980 Aug 28;286(5776):904–906. doi: 10.1038/286904a0. [DOI] [PubMed] [Google Scholar]
- Russell T. R., Terasaki W. L., Appleman M. M. Separate phosphodiesterases for the hydrolysis of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in rat liver. J Biol Chem. 1973 Feb 25;248(4):1334–1340. [PubMed] [Google Scholar]
- Samir Amer M., Kreighbaum W. E. Cyclic nucleotide phosphodiesterases: properties, activators, inhibitors, structure--activity relationships, and possible role in drug development. J Pharm Sci. 1975 Jan;64(1):1–37. doi: 10.1002/jps.2600640106. [DOI] [PubMed] [Google Scholar]
- Swillens S., Lefort E., Barber R., Butcher R. W., Dumont J. E. Consequences of hormone-induced desensitization of adenylate cyclase in intact cells. Biochem J. 1980 Apr 15;188(1):169–174. doi: 10.1042/bj1880169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wells J. N., Hardman J. G. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1977;8:119–143. [PubMed] [Google Scholar]
- Westwood S. A., Luzio J. P., Flockhart D. A., Siddle K. Investigation of the subcellular distribution of cyclic-AMP phosphodiesterase in rat hepatocytes, using a rapid immunological procedure for the isolation of plasma membrane. Biochim Biophys Acta. 1979 Apr 3;583(4):454–466. doi: 10.1016/0304-4165(79)90062-x. [DOI] [PubMed] [Google Scholar]
