Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Jan 15;202(1):153–162. doi: 10.1042/bj2020153

Regulation of tRNA methyltransferase activities by spermidine and putrescine. Inhibition of polyamine synthesis and tRNA methylation by alpha-methylornithine or 1,3-diaminopropan-2-ol in Dictyostelium.

M Mach, H Kersten, W Kersten
PMCID: PMC1158085  PMID: 7082304

Abstract

Inhibitors of polyamine synthesis (alpha-methylornithine and 1,3-diaminopropan-2-ol) were used to study the relationship between polyamine synthesis and specific methylations of tRNA in Dictyostelium discoideum during vegetative growth. Polyamine concentrations were found to be 10 mM for putrescine, 1.6 mM for spermidine and 7 mM for 1,3-diaminopropane throughout the growth stage. On treatment of growing amoebae with alpha-methylornithine or with 1,3-diaminopropan-2-ol (each at 5 mM), the syntheses of putrescine, spermidine and 1,3-diaminopropane were arrested within 4h. After polyamine synthesis had ceased, the incorporation of methyl groups into tRNA was considerably decreased under conditions that had no effect on the incorporation of uridine into tRNA, or on net syntheses of protein and of DNA. The following nucleosides in tRNA were concerned: 1 methyladenosine, 5-methylcytidine, 7-methylguanosine, 2-methylguanosine, N2N2-dimethylguanosine and 5-methyluridine (ribosylthymine). The corresponding tRNA methyltransferases, determined in Mg2+-free enzyme extracts, proved to be inactive unless polyamines were added. Putrescine and/or spermidine at concentrations of 10 mM or 1-2 mM respectively stimulate the transmethylation reaction in vitro to a maximal rate and to an optimal extent at exactly the same concentrations as found in vegetative cells. In contrast, 1,3-diaminopropane, which is formed from spermidine, does not affect the methylation of tRNA in vitro at physiological concentrations. Putrescine and/or spermidine stabilize the tRNA methyltransferases in crude extracts in the presence but not in the absence of the substrate tRNA. The results support the view that S-adenosylmethionine-dependent transmethylation reactions can be regulated by alterations of polyamine concentrations in vivo.

Full text

PDF
153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Monem M. M., Newton N. E., Weeks C. E. Inhibitors of polyamine biosynthesis. 1. Alpha-methyl-(plus or minus)-ornithine, an inhibitor of ornithine decarboxylase. J Med Chem. 1974 Apr;17(4):447–451. doi: 10.1021/jm00250a016. [DOI] [PubMed] [Google Scholar]
  2. Abdel-Monem M. M., Newton N. E., Weeks C. E. Inhibitors of polyamine biosynthesis. 3. (+/-)-5-Amino-2-hydrazine-2-methylpentanoic acid, an inhibitor of ornithine decarboxylase. J Med Chem. 1975 Sep;18(9):945–948. doi: 10.1021/jm00243a017. [DOI] [PubMed] [Google Scholar]
  3. Alhonen-Hongisto L., Pösö H., Jänne J. Inhibition of polyamine accumulation and cell proliferation by derivatives of diaminopropane in Ehrlich ascites cells grown in culture. Biochim Biophys Acta. 1979 Oct 25;564(3):473–487. doi: 10.1016/0005-2787(79)90037-6. [DOI] [PubMed] [Google Scholar]
  4. Bolton P. H., Kearns D. R. Effect of magnesium and polyamines on the structure of yeast tRNAPhe. Biochim Biophys Acta. 1977 Jul 5;477(1):10–19. doi: 10.1016/0005-2787(77)90156-3. [DOI] [PubMed] [Google Scholar]
  5. COHEN S. S., LICHTENSTEIN J. Polyamines and ribosome structure. J Biol Chem. 1960 Jul;235:2112–2116. [PubMed] [Google Scholar]
  6. Davis G. E., Gehrke C. W., Kuo K. C., Agris P. F. Major and modified nucleosides in tRNA hydrolysates by high-performance liquid chromatography. J Chromatogr. 1979 May 21;173(2):281–298. doi: 10.1016/s0021-9673(00)92297-0. [DOI] [PubMed] [Google Scholar]
  7. Dingermann T., Mach M., Kersten H. Synthesis of transfer ribonucleic acids with uridine or 2'-O-methylribothymidine at position 54 in developing Dictyostelium discoideum. J Gen Microbiol. 1979 Nov;115(1):223–232. doi: 10.1099/00221287-115-1-223. [DOI] [PubMed] [Google Scholar]
  8. Doetsch K., Gadsden R. H. Determination of total urinary protein, combining lowry sensitivity and biuret specificity. Clin Chem. 1973 Oct;19(10):1170–1178. [PubMed] [Google Scholar]
  9. FLEISSNER E., BOREK E. A new enzyme of RNA synthesis: RNA methylase. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1199–1203. doi: 10.1073/pnas.48.7.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  11. Kersten H., Albani M., Männlein E., Praisler R., Wurmbach P., Nierhaus K. H. On the role of ribosylthymine in prokaryotic tRNA function. Eur J Biochem. 1981 Feb;114(2):451–456. doi: 10.1111/j.1432-1033.1981.tb05166.x. [DOI] [PubMed] [Google Scholar]
  12. Leboy P. S., Glick J. M. tRNA methyltransferases from rat liver. Differences in response of partially purified enzymes to polyamines and inorganic salts. Biochim Biophys Acta. 1976 Jun 2;435(1):30–38. doi: 10.1016/0005-2787(76)90188-x. [DOI] [PubMed] [Google Scholar]
  13. Leboy P. S. Stimulation of soluble ribonucleic acid methylase activity by polyamines. Biochemistry. 1970 Mar 31;9(7):1577–1584. doi: 10.1021/bi00809a016. [DOI] [PubMed] [Google Scholar]
  14. Mach M., Kersten H., Kersten W. Measurements of polyamines and their acetylated derivatives in cell extracts and physiological fluids by use of an amino acid analyzer. J Chromatogr. 1981 Apr 10;223(1):51–57. doi: 10.1016/s0378-4347(00)80067-5. [DOI] [PubMed] [Google Scholar]
  15. Mamont P. S., Böhlen P., McCann P. P., Bey P., Schuber F., Tardif C. Alpha-methyl ornithine, a potent competitive inhibitor of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. Proc Natl Acad Sci U S A. 1976 May;73(5):1626–1630. doi: 10.1073/pnas.73.5.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mamont P. S., Duchesne M. C., Grove J., Tardif C. Initial characterization of a HTC cell variant partially resistant to the anti-proliferative effect of ornithine decarboxylase inhibitors. Exp Cell Res. 1978 Sep;115(2):387–393. doi: 10.1016/0014-4827(78)90292-6. [DOI] [PubMed] [Google Scholar]
  17. McCann P. P., Tardiff C., Mamont P. S., Schuber F. Biphasic induction of ornithine decarboxylase and putrescine levels in growing HTC cells. Biochem Biophys Res Commun. 1975 May 5;64(1):336–341. doi: 10.1016/0006-291x(75)90258-2. [DOI] [PubMed] [Google Scholar]
  18. Nishikura K., De Robertis E. M. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J Mol Biol. 1981 Jan 15;145(2):405–420. doi: 10.1016/0022-2836(81)90212-6. [DOI] [PubMed] [Google Scholar]
  19. Pegg A. E. Investigation of the turnover of rat liver S-adenosylmethionine decarboxylase using a specific antibody. J Biol Chem. 1979 May 10;254(9):3249–3253. [PubMed] [Google Scholar]
  20. Pegg A. E. Methylation of purified transfer RNAs by liver extracts from normal and mestranol-treated rats. Biochim Biophys Acta. 1973 Sep 7;319(3):354–363. doi: 10.1016/0005-2787(73)90175-5. [DOI] [PubMed] [Google Scholar]
  21. Pegg A. E. The effects of diamines and polyamines on enzymic methylation of nucleic acid. Biochim Biophys Acta. 1971 Apr 8;232(4):630–642. doi: 10.1016/0005-2787(71)90755-6. [DOI] [PubMed] [Google Scholar]
  22. Pegg A. E., Williams-Ashman H. G. On the role of S-adenosyl-L-methionine in the biosynthesis of spermidine by rat prostate. J Biol Chem. 1969 Feb 25;244(4):682–693. [PubMed] [Google Scholar]
  23. Quigley G. J., Teeter M. M., Rich A. Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):64–68. doi: 10.1073/pnas.75.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raettig R., Kersten H., Weissenbach J., Dirheimer G. Methylation of an adenosine in the D-loop of specific transfer RNAs from yeast by a procaryotic tRNA (adenine-1) methyltransferase. Nucleic Acids Res. 1977 Jun;4(6):1769–1782. doi: 10.1093/nar/4.6.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sakai T. T., Cohen S. S. Effects of polyamines on the structure and reactivity of tRNA. Prog Nucleic Acid Res Mol Biol. 1976;17:15–42. doi: 10.1016/s0079-6603(08)60064-1. [DOI] [PubMed] [Google Scholar]
  26. Sakai T., Hori C., Kano K., Oka T. Purification and characterization of S-adenosyl-L-methionine decarboxylase from mouse mammary gland and liver. Biochemistry. 1979 Dec 11;18(25):5541–5548. doi: 10.1021/bi00592a003. [DOI] [PubMed] [Google Scholar]
  27. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  28. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES