Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Jan 15;202(1):163–169. doi: 10.1042/bj2020163

Studies on the nature of the high-affinity trialkyltin binding site of rat liver mitochondria.

A P Dawson, B G Farrow, M J Selwyn
PMCID: PMC1158086  PMID: 7082305

Abstract

1. The proteolipid fraction isolated from rat liver mitochondria pretreated with [3H]triphenyltin chloride is enriched in triphenyltin compared with the original mitochondria. 2. Part of this [3H]triphenyltin is eluted with a protein of Mr 5000-6000 on Sephadex LH20 chromatography. 2. Mössbauer spectra of the proteolipid fraction treated with 119Sn-enriched triethyltin chloride show a doublet which corresponds closely with that assigned previously [Farrow & Dawson (1978) Eur. J. Biochem. 86. 85-95] to the absorption of triethyltin bound to the high-affinity binding site of the mitochondrial ATPase.

Full text

PDF
163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldridge W. N., Street B. W. Oxidative phosphorylation. The specific binding of trimethyltin and triethyltin to rat liver mitochondria. Biochem J. 1970 Jun;118(1):171–179. doi: 10.1042/bj1180171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bertina R. M., Schrier P. I., Slater E. C. The binding of aurovertin to mitochondria, and its effect on mitochondrial respiration. Biochim Biophys Acta. 1973 Jun 28;305(3):503–518. doi: 10.1016/0005-2728(73)90072-8. [DOI] [PubMed] [Google Scholar]
  3. Cain K., Partis M. D., Griffiths D. E. Dibutylchloromethyltin chloride, a covalent inhibitor of the adenosine triphosphate synthase complex. Biochem J. 1977 Sep 15;166(3):593–602. doi: 10.1042/bj1660593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cattell K. J., Lindop C. R., Knight I. G., Beechey R. B. The identification of the site of action of NN'-dicyclohexylcarbodi-imide as a proteolipid in mitochondrial membranes. Biochem J. 1971 Nov;125(1):169–177. doi: 10.1042/bj1250169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawson A. P., Selwyn M. J. The action of trialkyltin compounds on mitochondrial respiration. The effect of pH. Biochem J. 1974 Mar;138(3):349–357. doi: 10.1042/bj1380349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dawson A. P., Selwyn M. J. The action of tributyltin on energy coupling in coupling-factor-deficient submitochondrial particles. Biochem J. 1975 Nov;152(2):333–339. doi: 10.1042/bj1520333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elliott B. M., Aldridge W. N., Bridges J. W. Triethyltin binding to cat haemoglobin. Evidence for two chemically distinct sites and a role for both histidine and cysteine residues. Biochem J. 1979 Feb 1;177(2):461–470. doi: 10.1042/bj1770461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M. Proteolipides, a new type of tissue lipoproteins; their isolation from brain. J Biol Chem. 1951 Aug;191(2):807–817. [PubMed] [Google Scholar]
  9. Farrow B. G., Dawson A. P. Investigation of the interaction of triethyltin with rat liver mitochondria using binding studies and Mössbauer spectroscopy. Eur J Biochem. 1978 May;86(1):85–95. doi: 10.1111/j.1432-1033.1978.tb12287.x. [DOI] [PubMed] [Google Scholar]
  10. Fillingame R. H. Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli. J Biol Chem. 1976 Nov 10;251(21):6630–6637. [PubMed] [Google Scholar]
  11. Krämer R., Aquila H., Klingenberg M. Isolation of the unliganded adenosine 5'-diphosphate, adenosine 5'-triphosphate carrier-linked binding protein and incorporation into the membranes of liposomes. Biochemistry. 1977 Nov 15;16(23):4949–4953. doi: 10.1021/bi00642a001. [DOI] [PubMed] [Google Scholar]
  12. Manger J. R. The effect of triethyltin on mitochondrial ion accumulation. FEBS Lett. 1969 Dec 30;5(5):331–334. doi: 10.1016/0014-5793(69)80349-2. [DOI] [PubMed] [Google Scholar]
  13. Partis M. D., Bertoli E., Griffiths D. E., Azzi A. Interaction of the dibutylchloromethyltin chloride binding site with the carbodiimide binding site in mitochondria. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1103–1108. doi: 10.1016/0006-291x(80)90065-0. [DOI] [PubMed] [Google Scholar]
  14. Rose M. S., Aldridge W. N. Oxidative phosphorylation. The effect of anions on the inhibition by triethyltin of various mitochondrial functions, and the relationship between this inhibition and binding of triethyltin. Biochem J. 1972 Mar;127(1):51–59. doi: 10.1042/bj1270051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Selwyn M. J., Dawson A. P., Stockdale M., Gains N. Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl- and triphenyltin compounds. Eur J Biochem. 1970 May 1;14(1):120–126. doi: 10.1111/j.1432-1033.1970.tb00268.x. [DOI] [PubMed] [Google Scholar]
  16. Skilleter D. N. The influence of adenine nucleotides and oxidizable substrates on triethyltin-mediated chloride uptake by rat liver mitochondria in potassium chloride media. Biochem J. 1976 Feb 15;154(2):271–276. doi: 10.1042/bj1540271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stockdale M., Dawson A. P., Selwyn M. J. Effects of trialkyltin and triphenyltin compounds on mitochondrial respiration. Eur J Biochem. 1970 Aug;15(2):342–351. doi: 10.1111/j.1432-1033.1970.tb01013.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES