Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Nov 4:2024.11.01.621575. [Version 2] doi: 10.1101/2024.11.01.621575

Inhibitors of lysinoalanine crosslinking in the flagella hook as antimicrobials against spirochetes

Michael J Lynch, Kurni Kurniyati, Maithili Deshpande, Nyles W Charon, Chunhao Li, Brian R Crane
PMCID: PMC11580869  PMID: 39574594

Abstract

Spirochetes are especially invasive bacteria that are responsible for several human diseases, including Lyme disease, periodontal disease, syphilis and leptospirosis. Spirochetes rely on an unusual form of motility based on periplasmic flagella (PFs) to infect hosts and evade the immune system. The flexible hook of these PFs contains a post-translational modification in the form of a lysinoalanine (Lal) crosslink between adjacent subunits of FlgE, which primarily comprise the hook. Lal crosslinking has since been found in key species across phylum and involves residues that are highly conserved. The requirement of the Lal crosslink for motility of the pathogens Treponema denticola (Td) and Borreliella burgdorferi (Bb) establish Lal as a potential therapeutic target for the development of anti-microbials. Herein, we present the design, development and application of a NanoLuc-based high-throughput screen that was used to successfully identify two, structurally related Lal crosslink inhibitors (hexachlorophene and triclosan) from a library of clinically approved small molecules. A structure-activity relationship study further expanded the inhibitor set to a third compound (dichlorophene) and each inhibitor was demonstrated to biochemically block autocatalytic crosslinking of FlgE from several pathogenic spirochetes with varied mechanisms and degrees of specificity. The most potent inhibitor, hexachlorophene, alters Lal crosslinking in cultured cells of Td and reduces bacterial motility in swimming plate assays. Overall, these results provide a proof-of-concept for the discovery and development of Lal-crosslink inhibitors to combat spirochete-derived illnesses.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES