Abstract
In vivo imaging of dynamic sub-cellular brain structures in Drosophila melanogaster is key to understanding several phenomena in neuroscience. However, its implementation has been hindered by a trade-off between spatial resolution, speed, photobleaching, phototoxicity, and setup complexity required to access the specific target regions of the small brain of Drosophila . Here, we present a single objective light-sheet microscope, customized for in vivo imaging of adult flies and optimized for maximum resolution. With it, we imaged the axonal projections of small lateral ventral neurons (known as s-LNvs) in intact adult flies. We imaged the plasma membrane, mitochondria, and dense-core vesicles with high spatial resolution up to 370 nm, ten times lower photobleaching than confocal microscopy, lower invasiveness and complexity in sample mounting than alternative light-sheet technologies, and without relying on phototoxic pulsed infrared lasers. This unique set of features paves the way for new long-term, dynamic studies in the brains of living flies.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.
