Abstract
The Na+-induced efflux of Ca2+ catalysed by the Na+/Ca2+ carrier of cardiac mitochondria is strongly inhibited by extramitochondrial Ca2+. The nature of this inhibition was investigated as follows. (a) The apparent association of external Na+ and the Ca2+ analogue Sr2+ with substrate-binding sites (i.e. those sites involved in cation translocation) is promoted markedly by K+. The inhibition of Na+/Ca2+ exchange by external Ca2+ is affected little by K+. (b) There is a competitive relationship between the binding of external Na+ and external Ca2+ to substrate-binding sites, whereas at low concentrations (less than 4 microM) extramitochondrial Ca2+ is a partial non-competitive inhibitor with respect to external Na+. (c) This inhibiton by external Ca2+ is characterized by a maximal decrease of about 70% in the Vmax of Na+/Ca2+ exchange and by cooperative binding of external Ca2+ to sites that are half saturated by 0.7-0.8 microM free Ca2+. The binding of Ca2+ and Sr2+ to substrate-binding sites shows no co-operativity. These criteria suggest that the Na+/Ca2+ carrier may contain regulatory sites that render the carrier sensitive to changes in extramitochondrial [Ca2+] within the physiological range.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Affolter H., Carafoli E. The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. Biochem Biophys Res Commun. 1980 Jul 16;95(1):193–196. doi: 10.1016/0006-291x(80)90723-8. [DOI] [PubMed] [Google Scholar]
- Caroni P., Reinlib L., Carafoli E. Charge movements during the Na+-Ca2+ exchange in heart sarcolemmal vesicles. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6354–6358. doi: 10.1073/pnas.77.11.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crompton M., Heid I., Carafoli E. The activation by potassium of the sodium--calcium carrier of cardiac mitochondria. FEBS Lett. 1980 Jun 30;115(2):257–259. doi: 10.1016/0014-5793(80)81181-1. [DOI] [PubMed] [Google Scholar]
- Crompton M., Heid I. The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem. 1978 Nov 15;91(2):599–608. doi: 10.1111/j.1432-1033.1978.tb12713.x. [DOI] [PubMed] [Google Scholar]
- Crompton M., Künzi M., Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977 Oct 3;79(2):549–558. doi: 10.1111/j.1432-1033.1977.tb11839.x. [DOI] [PubMed] [Google Scholar]
- Crompton M. The sodium ion/calcium ion cycle of cardiac mitochondria. Biochem Soc Trans. 1980 Jun;8(3):261–262. doi: 10.1042/bst0080261. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980 Sep 22;119(1):1–8. doi: 10.1016/0014-5793(80)80986-0. [DOI] [PubMed] [Google Scholar]
- Hiraoka T., DeBuysere M., Olson M. S. Studies of the effects of beta-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart. J Biol Chem. 1980 Aug 25;255(16):7604–7609. [PubMed] [Google Scholar]
- Kessar P., Crompton M. The alpha-adrenergic-mediated activation of Ca2+ influx into cardiac mitochondria. A possible mechanism for the regulation of intramitochondrial free CA2+. Biochem J. 1981 Nov 15;200(2):379–388. doi: 10.1042/bj2000379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormack J. G., Denton R. M. The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents. Biochem J. 1981 Feb 15;194(2):639–643. doi: 10.1042/bj1940639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMillin-Wood J., Wolkowicz P. E., Chu A., Tate C. A., Goldstein M. A., Entman M. L. Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta. 1980 Jul 8;591(2):251–265. doi: 10.1016/0005-2728(80)90157-7. [DOI] [PubMed] [Google Scholar]
- Nicholls D. G., Crompton M. Mitochondrial calcium transport. FEBS Lett. 1980 Mar 10;111(2):261–268. doi: 10.1016/0014-5793(80)80806-4. [DOI] [PubMed] [Google Scholar]
- Palmer J. W., Tandler B., Hoppel C. L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977 Dec 10;252(23):8731–8739. [PubMed] [Google Scholar]
- Philipson K. D., Nishimoto A. Y. Na+-Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J Biol Chem. 1980 Jul 25;255(14):6880–6882. [PubMed] [Google Scholar]
- Pitts B. J. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. Coupling to the sodium pump. J Biol Chem. 1979 Jul 25;254(14):6232–6235. [PubMed] [Google Scholar]
- Reeves J. P., Sutko J. L. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science. 1980 Jun 27;208(4451):1461–1464. doi: 10.1126/science.7384788. [DOI] [PubMed] [Google Scholar]
- Reuter H., Scholz H. The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol. 1977 Jan;264(1):49–62. doi: 10.1113/jphysiol.1977.sp011657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor W. M., Prpić V., Exton J. H., Bygrave F. L. Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with alpha-adrenergic agonists and with glucagon. Biochem J. 1980 May 15;188(2):443–450. doi: 10.1042/bj1880443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMSON J. R. METABOLIC EFFECTS OF EPINEPHRINE IN THE ISOLATED, PERFUSED RAT HEART. I. DISSOCIATION OF THE GLYCOGENOLYTIC FROM THE METABOLIC STIMULATORY EFFECT. J Biol Chem. 1964 Sep;239:2721–2729. [PubMed] [Google Scholar]
- Williamson J. R. Metabolic effects of epinephrine in the perfused rat heart. II. Control steps of glucose and glycogen metabolism. Mol Pharmacol. 1966 May;2(3):206–220. [PubMed] [Google Scholar]
- Yamada E. W., Shiffman F. H., Huzel N. J. Ca2+-regulated release of an ATPase inhibitor protein from submitochondrial particles derived from skeletal muscles of the rat. J Biol Chem. 1980 Jan 10;255(1):267–273. [PubMed] [Google Scholar]