Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Mar 15;202(3):693–698. doi: 10.1042/bj2020693

Regulation of the activity of ornithine decarboxylase and S-adenosylmethionine decarboxylase in mammary gland and liver of lactating rats. Effects of starvation, prolactin and insulin deficiency.

M E Brosnan, V Ilic, D H Williamson
PMCID: PMC1158164  PMID: 7046736

Abstract

1. Starvation caused a marked decrease in the activity of ornithine decarboxylase in mammary gland, together with a lesser decrease in the activity of S-adenosylmethionine decarboxylase and a marked fall in milk production. Liver ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were unaffected. 2. Refeeding for 2.5 h was without effect on ornithine decarboxylase in mammary gland, but it returned the S-adenosylmethionine decarboxylase activity in mammary gland to control values and elevated both ornithine decarboxylase and S-adenosylmethionine decarboxylase in liver. 3. Refeeding for 5 h returned the activity of ornithine decarboxylase in mammary gland to fed-state values and resulted in further increases in S-adenosylmethionine decarboxylase in mammary gland and liver and in ornithine decarboxylase in liver. 4. Prolactin deficiency in fed rats resulted in decreased milk production and decreased activity of ornithine decarboxylase in mammary gland. The increase in ornithine decarboxylase activity normally seen after refeeding starved rats for 5 h was completely blocked by prolactin deficiency. 5. In fed rats, injection of streptozotocin 2.5 h before death caused a decrease in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase in mammary gland, which could be reversed by simultaneous injection of insulin. Insulin deficiency also prevented the increase in S-adenosylmethionine decarboxylase in liver and mammary gland normally observed after refeeding starved rats for 2.5 h.

Full text

PDF
693

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisbitt R. P., Barry J. M. Stimulation by insulin of ornithine decarboxylase activity in cultured mammary tissue. Biochim Biophys Acta. 1973 Oct 5;320(3):610–616. doi: 10.1016/0304-4165(73)90140-2. [DOI] [PubMed] [Google Scholar]
  2. BRADLEY L. B., JACOB M., JACOBS E. E., SANADI D. R. Uncoupling of oxidative phosphorylation by cadmium ion. J Biol Chem. 1956 Nov;223(1):147–156. [PubMed] [Google Scholar]
  3. Baldwin R. L., Milligan L. P. Enzymatic changes associated with the initiation and maintenance of lactation in the rat. J Biol Chem. 1966 May 10;241(9):2058–2066. [PubMed] [Google Scholar]
  4. Brosnan M. E., Roebothan B. V., Hall D. E. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats. Biochem J. 1980 Aug 15;190(2):395–403. doi: 10.1042/bj1900395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carrick D. T., Kuhn N. J. Diurnal variation and response to food withdrawal of lactose synthesis in lactating rats. Biochem J. 1978 Jul 15;174(1):319–325. doi: 10.1042/bj1740319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conover C. A., Rozovski S. J., Belur E. R., Aoki T. T., Ruderman N. B. Ornithine decarboxylase activity in insulin-deficient states. Biochem J. 1980 Nov 15;192(2):725–732. doi: 10.1042/bj1920725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dannies P. S., Rudnick M. S. 2-Bromo-alpha-ergocryptine causes degradation of prolactin in primary cultures of rat pituitary cells after chronic treatment. J Biol Chem. 1980 Apr 10;255(7):2776–2781. [PubMed] [Google Scholar]
  8. Kyriakou S. Y., Kuhn N. J. Lactogenesis in the diabetic rat. J Endocrinol. 1973 Oct;59(1):199–200. doi: 10.1677/joe.0.0590199. [DOI] [PubMed] [Google Scholar]
  9. Linzell J. L. The effect of very frequent milking and of oxytocin on the yield and composition of milk in fed and fasted goats. J Physiol. 1967 May;190(2):333–346. doi: 10.1113/jphysiol.1967.sp008212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lundgren D. W., Oka T. Alterations in polyamine levels in rat blood during pregnancy and lactation. Am J Physiol. 1978 May;234(5):E451–E456. doi: 10.1152/ajpendo.1978.234.5.E451. [DOI] [PubMed] [Google Scholar]
  11. Oka T., Perry J. W. Arginase affects lactogenesis through its influence on the biosynthesis of spermidine. Nature. 1974 Aug 23;250(5468):660–661. doi: 10.1038/250660a0. [DOI] [PubMed] [Google Scholar]
  12. Oka T., Perry J. W., Kano K. Hormonal regulation of spermidine synthase during the development of mouse mammary epithelium in vitro. Biochem Biophys Res Commun. 1977 Dec 7;79(3):979–986. doi: 10.1016/0006-291x(77)91206-2. [DOI] [PubMed] [Google Scholar]
  13. Oka T., Perry J. W. Spermidine as a possible mediator of glucocorticoid effect on milk protein synthesis in mouse mammary epithelium in vitro. J Biol Chem. 1974 Dec 10;249(23):7647–7652. [PubMed] [Google Scholar]
  14. Oka T., Perry J. W. Studies on regulatory factors of ornithine decarboxylase activity during development of mouse mammary epithelium in vitro. J Biol Chem. 1976 Mar 25;251(6):1738–1744. [PubMed] [Google Scholar]
  15. Raina A., Pajula R. L., Eloranta T. A rapid assay method for spermidine and spermine synthases. Distribution of polyamine-synthesizing enzymes and methionine adenosyltransferase in rat tissues. FEBS Lett. 1976 Sep 1;67(3):252–255. doi: 10.1016/0014-5793(76)80540-6. [DOI] [PubMed] [Google Scholar]
  16. Rillema J. A., Linebaugh B. E., Mulder J. A. Regulation of casein synthesis by polyamines in mammary gland explants of mice. Endocrinology. 1977 Feb;100(2):529–536. doi: 10.1210/endo-100-2-529. [DOI] [PubMed] [Google Scholar]
  17. Robinson A. M., Girard J. R., Williamson D. H. Evidence for a role of insulin in the regulation of lipogenesis in lactating rat mammary gland. Measurements of lipogenesis in vivo and plasma hormone concentrations in response to starvation and refeeding. Biochem J. 1978 Oct 15;176(1):343–346. doi: 10.1042/bj1760343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robinson A. M., Williamson D. H. Comparison of glucose metabolism in the lactating mammary gland of the rat in vivo and in vitro. Effects of starvation, prolactin or insulin deficiency. Biochem J. 1977 Apr 15;164(1):153–159. doi: 10.1042/bj1640153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Russell D. H., Byus C. V., Manen C. A. Proposed model of major sequential biochemical events of a trophic response. Life Sci. 1976 Nov 1;19(9):1297–1305. [PubMed] [Google Scholar]
  20. Russell D. H., McVicker T. A. Polyamine biogenesis in the rat mammary gland during pregnancy and lactation. Biochem J. 1972 Nov;130(1):71–76. doi: 10.1042/bj1300071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Symonds G. W., Brosnan M. E. Subcellular localization of putrescine-dependent S-adenosyl methionine decarboxylase in rat liver. FEBS Lett. 1977 Dec 15;84(2):385–387. doi: 10.1016/0014-5793(77)80730-8. [DOI] [PubMed] [Google Scholar]
  22. Topper R. J., Oka T., Vonderhaar B. K. Techniques for studying development of normal mammary epithelial cells in organ culture. Methods Enzymol. 1975;39:443–454. doi: 10.1016/s0076-6879(75)39039-3. [DOI] [PubMed] [Google Scholar]
  23. Viña J. R., Williamson D. H. Effects of lactation on L-leucine metabolism in the rat. Studies in vivo and in vitro. Biochem J. 1981 Mar 15;194(3):941–947. doi: 10.1042/bj1940941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES