Abstract
1. The p.m.r. spectra of the larger CNBr-cleavage peptides of troponin I from rabbit fast-twitch skeletal muscle corresponded largely to those of fairly flexible solution structures. 2. On addition of troponin C to each of the CNBr-cleavage peptides in turn, perturbations of side chains were noted only for peptides CN5 (residues 1-21) and CN4 (residues 96-116). 3. In the presence of Ca2+, troponin C induced perturbations of the side chains of threonine-11, alanine, isoleucine and arginine residues of peptide CN5. 4. In the presence of Ca2+, troponin C induced perturbations of the side chains of phenylalanine, lysine and leucine residues of peptide CN4. 5. Irrespective of the presence or absence of Ca2+, specific interaction with actin was observed only with peptide CN4. In this case the side chains of arginine residues were perturbed. 6. It is concluded that actin interacts with the C-terminal region of peptide CN4, whereas troponin C interacts with the N-terminal region of peptide CN4 and with peptide CN5.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amphlett G. W., Vanaman T. C., Perry S. V. Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mg2+-stimulated ATPase of skeletal muscle actinomyosin. FEBS Lett. 1976 Dec 15;72(1):163–168. doi: 10.1016/0014-5793(76)80836-8. [DOI] [PubMed] [Google Scholar]
- Cole H. A., Perry S. V. The phosphorylation of troponin I from cardiac muscle. Biochem J. 1975 Sep;149(3):525–533. doi: 10.1042/bj1490525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebashi S., Endo M., Otsuki I. Control of muscle contraction. Q Rev Biophys. 1969 Nov;2(4):351–384. doi: 10.1017/s0033583500001190. [DOI] [PubMed] [Google Scholar]
- Ebashi S., Wakabayashi T., Ebashi F. Troponin and its components. J Biochem. 1971 Feb;69(2):441–445. doi: 10.1093/oxfordjournals.jbchem.a129486. [DOI] [PubMed] [Google Scholar]
- Evans J. S., Levine B. A., Leavis P. C., Gergely J., Grabarek Z., Drabikowski W. Proton magnetic resonance studies on proteolytic fragments of troponin-C. Structural homology with the native molecule. Biochim Biophys Acta. 1980 May 29;623(1):10–20. doi: 10.1016/0005-2795(80)90003-3. [DOI] [PubMed] [Google Scholar]
- Evans J. S., Levine B. A. Protein-protein interaction sites in the calcium modulated skeletal muscle troponin complex. J Inorg Biochem. 1980 Jun;12(3):227–239. doi: 10.1016/s0162-0134(00)80204-4. [DOI] [PubMed] [Google Scholar]
- Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang T. S., Bylund D. B., Stull J. T., Krebs E. G. The amino acid sequences of the phosphorylated sites in troponin-I from rabbit skeletal muscle. FEBS Lett. 1974 Jun 15;42(3):249–252. doi: 10.1016/0014-5793(74)80738-6. [DOI] [PubMed] [Google Scholar]
- Leavis P. C., Rosenfeld S. S., Gergely J., Grabarek Z., Drabikowski W. Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T. J Biol Chem. 1978 Aug 10;253(15):5452–5459. [PubMed] [Google Scholar]
- Levine B. A., Thornton J. M., Fernandes R., Kelly C. M., Mercola D. Comparison of the calcium- and magnesium-induced structural changes of troponin--C. A proton magnetic resonance study. Biochim Biophys Acta. 1978 Jul 21;535(1):11–24. doi: 10.1016/0005-2795(78)90028-4. [DOI] [PubMed] [Google Scholar]
- Moir A. J., Wilkinson J. M., Perry S. V. The phosphorylation sites of troponin I from white skeletal muscle of the rabbit. FEBS Lett. 1974 Jun 15;42(3):253–256. doi: 10.1016/0014-5793(74)80739-8. [DOI] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- Perry S. V., Cole H. A. Phosphorylation of troponin and the effects of interactions between the components of the complex. Biochem J. 1974 Sep;141(3):733–743. doi: 10.1042/bj1410733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry S. V. The regulation of contractile activity in muscle. Biochem Soc Trans. 1979 Aug;7(4):593–617. doi: 10.1042/bst0070593. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Syska H., Wilkinson J. M., Grand R. J., Perry S. V. The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J. 1976 Feb 1;153(2):375–387. doi: 10.1042/bj1530375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weeks R. A., Perry S. V. Characterization of a region of the primary sequence of troponin C involved in calcium ion-dependent interaction with troponin I. Biochem J. 1978 Aug 1;173(2):449–457. doi: 10.1042/bj1730449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson J. M., Grand R. J. Comparison of amino acid sequence of troponin I from different striated muscles. Nature. 1978 Jan 5;271(5640):31–35. doi: 10.1038/271031a0. [DOI] [PubMed] [Google Scholar]
- Wilkinson J. M., Grand R. J. The amino acid sequence of troponin I from rabbit skeletal muscle. Biochem J. 1975 Aug;149(2):493–496. [PMC free article] [PubMed] [Google Scholar]
- Wilkinson J. M., Perry S. V., Cole H. A., Trayer I. P. The regulatory proteins of the myofibril. Separation and biological activity of the components of inhibitory-factor preparations. Biochem J. 1972 Mar;127(1):215–228. doi: 10.1042/bj1270215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson J. M. The preparation and properties of the components of troponin B. Biochim Biophys Acta. 1974 Aug 8;359(2):379–388. doi: 10.1016/0005-2795(74)90238-4. [DOI] [PubMed] [Google Scholar]