Abstract
1. Synthesis of 3'-phosphoadenosine-5'-phosphosulphate from ATP and 35SO4(-2) was demonstrated by homogenates of gut. Malpighian tubules and fat body of Spodoptera littoralis. 2. The enzyme system was most active in the gut tissue, and was primarily located in the cytosol fraction of the cell. Gut cytosol preparations were used as a source of the 3'-phosphoadenosine-5'-phosphosulphate generating system for more detailed studies. 3. Maximum synthesis required an incubation mixture containing Tris/HCl buffer (pH 7.5), ATP (20 mM), MgCl2 (13.0 mM) and K2SO4 (3 mM). 4. The specific activity of 3'-phosphoadenosine-5'-phosphosulphate synthesizing activity in gut cytosol increased during development of the sixth instar larva, reaching a peak at day 4. A sudden fall in specific activity was observed in the prepupal stage. 5. 3'-Phosphoadenosine-5'-phosphosulphate formation is the rate limiting process in the overall sulphation of p-nitrophenol in the gut cytosol preparations from S. littoralis. 6. It is concluded that the properties of the sulphate-activating system in this insect are similar to those reported for vertebrates.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRUNNGRABER E. G. Nucleotides involved in the enzymatic conjugation of phenols with sulfate. J Biol Chem. 1958 Aug;233(2):472–477. [PubMed] [Google Scholar]
- Bailey-Wood R., Dodgson K. S., Rose F. A. Purification and properties of two adenosine-5'-phosphosulphate sulphohydrolases from rat liver and their possible role in the degradation of 3'-phosphoadenosine 5'-phosphosulphate. Biochim Biophys Acta. 1970 Nov 11;220(2):284–299. doi: 10.1016/0005-2744(70)90013-6. [DOI] [PubMed] [Google Scholar]
- Bodnaryk R. P., Brunet P. C. 3-O-hydrosulphato-4-hydroxyphenethylamine (dopamine 3-O-sulphate), a metabolite involved in the sclerotization of insect cuticle. Biochem J. 1974 Mar;138(3):463–469. doi: 10.1042/bj1380463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodnaryk R. P., Brunet P. C., Koeppe J. K. On the metabolism of N-acetyldopamine in Periplaneta americana. J Insect Physiol. 1974 May;20(5):911–923. doi: 10.1016/0022-1910(74)90180-2. [DOI] [PubMed] [Google Scholar]
- DODGSON K. S., SPENCER B. Studies on sulphatases. I. The choice of substrate for the assay of rat-liver arylsulphatase. Biochem J. 1953 Feb;53(3):444–451. doi: 10.1042/bj0530444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall M. O., Straatsma B. R. The synthesis of 3'-phosphoadenosine 5'-phosphosulfate by retinae and livers of normal and vitamin A-deficient rats. Biochim Biophys Acta. 1966 Aug 24;124(2):246–253. doi: 10.1016/0304-4165(66)90186-3. [DOI] [PubMed] [Google Scholar]
- Hutchins R. F., Kaplanis J. N. Sterol sulfates in an insect. Steroids. 1969 May;13(5):605–614. doi: 10.1016/s0039-128x(69)80014-0. [DOI] [PubMed] [Google Scholar]
- Jenner W. N., Rose P. A. Studies on the sulphation of 3,4-dihydroxyphenylethylamine (dopamine) and related compounds by rat tissues. Biochem J. 1973 Sep;135(1):109–114. doi: 10.1042/bj1350109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koizumi T., Suematsu T., Kawasaki A., Hiramatsu K., Iwabori N. Synthesis and degradation of active sulfate in liver. Biochim Biophys Acta. 1969 Jun 17;184(1):106–113. doi: 10.1016/0304-4165(69)90104-4. [DOI] [PubMed] [Google Scholar]
- Koolman J., Hoffmann J. A., Karlson P. Sulphage esters as inactivation products of ecdysone in Locusta migratoria. Hoppe Seylers Z Physiol Chem. 1973 Sep;354(9):1043–1048. doi: 10.1515/bchm2.1973.354.2.1043. [DOI] [PubMed] [Google Scholar]
- Mattock P., Jones J. G. Partial purification and properties of an enzyme from rat liver that catalyses the sulphation of L-tyrosyl derivatives. Biochem J. 1970 Mar;116(5):797–803. doi: 10.1042/bj1160797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulder G. J., Scholtens E. The availability of inorganic sulphate in blood for sulphate conjugation of drugs in rat liver in vivo. (35S)Sulphate incorporation into harmol sulphate. Biochem J. 1978 May 15;172(2):247–251. doi: 10.1042/bj1720247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slade M., Wilkinson C. F. Degradation and conjugation of Cecropia juvenile hormone by the southern armyworm (Prodenia eridania). Comp Biochem Physiol B. 1974 Sep 15;49(1B):99–103. doi: 10.1016/0305-0491(74)90228-4. [DOI] [PubMed] [Google Scholar]
- Smith J. N. The comparative metabolism of xenobiotics. Adv Comp Physiol Biochem. 1968;3:173–232. doi: 10.1016/b978-0-12-395512-8.50009-9. [DOI] [PubMed] [Google Scholar]
- Spencer B. Endogenous sulphate acceptors in rat liver. Biochem J. 1960 Nov;77(2):294–304. doi: 10.1042/bj0770294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong K. P., Yeo T. Assay of adenosine 3'-phosphate 5'-sulphatophosphate in hepatic tissues. Biochem J. 1979 Jul 1;181(1):107–110. doi: 10.1042/bj1810107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang R. S., Pelliccia J. G., Wilkinson C. F. Age-dependent arylsulphatase and sulphotransferase activities in the southern armyworm: a possible insect endocrine regulatory mechanism? Biochem J. 1973 Nov;136(3):817–820. doi: 10.1042/bj1360817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang R. S., Wilkinson C. F. Enzymic sulphation of p-nitrophenol and steroids by larval gut tissues of the southern armyworm (Prodenia evidania Cramer). Biochem J. 1972 Nov;130(2):487–493. doi: 10.1042/bj1300487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang R. S., Wilkinson C. F. Sulphotransferases and phosphotransferases in insects. Comp Biochem Physiol B. 1973 Dec;46(4):717–726. doi: 10.1016/0305-0491(73)90116-8. [DOI] [PubMed] [Google Scholar]
