Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 May 15;204(2):405–415. doi: 10.1042/bj2040405

Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.

R J Trotta, S G Sullivan, A Stern
PMCID: PMC1158366  PMID: 7115337

Abstract

Lipid peroxidation and haemoglobin degradation were the two extremes of a spectrum of oxidative damage in red cells exposed to t-butyl hydroperoxide. The exact position in this spectrum depended on the availability of glucose and the ligand state of haemoglobin. In red cells containing oxy- or carbonmono-oxy-haemoglobin, hexose monophosphate-shunt activity was mainly responsible for metabolism of t-butyl hydroperoxide; haem groups were the main scavengers in red cells containing methaemoglobin. Glutathione, via glutathione peroxidase, accounted for nearly all of the hydroperoxide metabolizing activity of the hexose monophosphate shunt. Glucose protection against lipid peroxidation was almost entirely mediated by glutathione, whereas glucose protection of haemoglobin was only partly mediated by glutathione. Physiological concentrations of intracellular or extracellular ascorbate had no effect on consumption of t-butyl hydroperoxide or oxidation of haemoglobin. Ascorbate was mainly involved in scavenging chain-propagating species involved in lipid peroxidation. The protective effect of intracellular ascorbate against lipid peroxidation was about 100% glucose-dependent and about 50% glutathione-dependent. Extracellular ascorbate functioned largely without a requirement for glucose metabolism, although some synergistic effects between extracellular ascorbate and glutathione were observed. Lipid peroxidation was not dependent on the rate or completion of t-butyl hydroperoxide consumption but rather on the route of consumption. Lipid peroxidation appears to depend on the balance between the presence of initiators of lipid peroxidation (oxyhaemoglobin and low concentrations of methaemoglobin) and terminators of lipid peroxidation (glutathione, ascorbate, high concentrations of methaemoglobin).

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti A., Casini A. F., Ferrali M., Comporti M. Effects of diffusible products of peroxidation of rat liver microsomal lipids. Biochem J. 1979 May 15;180(2):303–312. doi: 10.1042/bj1800303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chatterjee I. B., Banerjee A. Estimation of dehydroascorbic acid in blood of diabetic patients. Anal Biochem. 1979 Oct 1;98(2):368–374. doi: 10.1016/0003-2697(79)90155-6. [DOI] [PubMed] [Google Scholar]
  3. Chio K. S., Tappel A. L. Inactivation of ribonuclease and other enzymes by peroxidizing lipids and by malonaldehyde. Biochemistry. 1969 Jul;8(7):2827–2832. doi: 10.1021/bi00835a020. [DOI] [PubMed] [Google Scholar]
  4. Christophersen B. O. Reduction of linolenic acid hydroperoxide by a glutathione peroxidase. Biochim Biophys Acta. 1969 Apr 29;176(3):463–470. doi: 10.1016/0005-2760(69)90213-6. [DOI] [PubMed] [Google Scholar]
  5. GEORGE P. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. I. Titration with reducing agents. Biochem J. 1953 May;54(2):267–276. doi: 10.1042/bj0540267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green R. C., Little C., O'Brien P. J. The inactivation of isocitrate dehydrogenase by a lipid peroxide. Arch Biochem Biophys. 1971 Feb;142(2):598–605. doi: 10.1016/0003-9861(71)90524-8. [DOI] [PubMed] [Google Scholar]
  7. Gutteridge J. M. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates. FEBS Lett. 1981 Jun 15;128(2):343–346. doi: 10.1016/0014-5793(81)80113-5. [DOI] [PubMed] [Google Scholar]
  8. HARLEY J. D., MAUER A. M. Studies on the formation of Heinz bodies. I. Methemoglobin production and oxyhemoglobin destruction. Blood. 1960 Dec;16:1722–1735. [PubMed] [Google Scholar]
  9. HORGAN V. J., PHILPOT J. S., PORTER B. W., ROODYN D. B. Toxicity of autoxidized squalene and linoleic acid, and of simpler peroxides, in relation to toxicity of radiation. Biochem J. 1957 Dec;67(4):551–558. doi: 10.1042/bj0670551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HUGHES R. E. REDUCTION OF DEHYDROASORBIC ACID BY ANIMAL TISSUES. Nature. 1964 Sep 5;203:1068–1069. doi: 10.1038/2031068a0. [DOI] [PubMed] [Google Scholar]
  11. Hicks M., Gebicki J. M. A spectrophotometric method for the determination of lipid hydroperoxides. Anal Biochem. 1979 Nov 1;99(2):249–253. doi: 10.1016/s0003-2697(79)80003-2. [DOI] [PubMed] [Google Scholar]
  12. LEWIS S. E., WILLS E. D. Inhibition of the autoxidation of unsaturated fatty acids by haematin proteins. Biochim Biophys Acta. 1963 Jun 18;70:336–338. doi: 10.1016/0006-3002(63)90757-1. [DOI] [PubMed] [Google Scholar]
  13. Logani M. K., Davies R. E. Lipid oxidation: biologic effects and antioxidants--a review. Lipids. 1980 Jun;15(6):485–495. doi: 10.1007/BF02534079. [DOI] [PubMed] [Google Scholar]
  14. May J. M. The role of glutathione in rat adipocyte pentose phosphate cycle activity. Arch Biochem Biophys. 1981 Mar;207(1):117–127. doi: 10.1016/0003-9861(81)90016-3. [DOI] [PubMed] [Google Scholar]
  15. Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun. 1975 Mar 17;63(2):463–468. doi: 10.1016/0006-291x(75)90710-x. [DOI] [PubMed] [Google Scholar]
  16. O'Brien P. J. Intracellular mechanisms for the decomposition of a lipid peroxide. I. Decomposition of a lipid peroxide by metal ions, heme compounds, and nucleophiles. Can J Biochem. 1969 May;47(5):485–492. doi: 10.1139/o69-076. [DOI] [PubMed] [Google Scholar]
  17. Oshino N., Chance B. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase. Biochem J. 1977 Mar 15;162(3):509–525. doi: 10.1042/bj1620509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Packer J. E., Slater T. F., Willson R. L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979 Apr 19;278(5706):737–738. doi: 10.1038/278737a0. [DOI] [PubMed] [Google Scholar]
  19. Peisach J., Blumberg W. E., Rachmilewitz E. A. The demonstration of ferrihemochrome intermediates in heinz body formation following the reduction of oxyhemoglobin A by acetylphenylhydrazone. Biochim Biophys Acta. 1975 Jun 26;393(2):404–418. doi: 10.1016/0005-2795(75)90069-0. [DOI] [PubMed] [Google Scholar]
  20. Plaa G. L., Witschi H. Chemicals, drugs, and lipid peroxidation. Annu Rev Pharmacol Toxicol. 1976;16:125–141. doi: 10.1146/annurev.pa.16.040176.001013. [DOI] [PubMed] [Google Scholar]
  21. Placer Z. A., Cushman L. L., Johnson B. C. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966 Aug;16(2):359–364. doi: 10.1016/0003-2697(66)90167-9. [DOI] [PubMed] [Google Scholar]
  22. Redpath J. L., Willson R. L. Reducing compounds in radioprotection and radiosensitization: model experiments using ascorbic acid. Int J Radiat Biol Relat Stud Phys Chem Med. 1973 Jan;23(1):51–65. doi: 10.1080/09553007314550051. [DOI] [PubMed] [Google Scholar]
  23. Shimasaki H., Privett O. S. Studies on the role of vitamin E in the oxidation of blood components by fatty hydroperoxides. Arch Biochem Biophys. 1975 Aug;169(2):506–512. doi: 10.1016/0003-9861(75)90193-9. [DOI] [PubMed] [Google Scholar]
  24. Sies H., Moss K. M. A role of mitochondrial glutathione peroxidase in modulating mitochondrial oxidations in liver. Eur J Biochem. 1978 Mar 15;84(2):377–383. doi: 10.1111/j.1432-1033.1978.tb12178.x. [DOI] [PubMed] [Google Scholar]
  25. Sies H., Summer K. H. Hydroperoxide-metabolizing systems in rat liver. Eur J Biochem. 1975 Sep 15;57(2):503–512. doi: 10.1111/j.1432-1033.1975.tb02325.x. [DOI] [PubMed] [Google Scholar]
  26. Srivastava S. K., Awasthi Y. C., Beutler E. Useful agents for the study of glutathione metabolism in erythroyctes. Organic hydroperoxides. Biochem J. 1974 May;139(2):289–295. doi: 10.1042/bj1390289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stocks J., Dormandy T. L. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol. 1971 Jan;20(1):95–111. doi: 10.1111/j.1365-2141.1971.tb00790.x. [DOI] [PubMed] [Google Scholar]
  28. Trotta R. J., Sullivan S. G., Stern A. Lipid peroxidation and hemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Dependence on glucose metabolism and hemoglobin status. Biochim Biophys Acta. 1981 Dec 4;678(2):230–237. doi: 10.1016/0304-4165(81)90211-7. [DOI] [PubMed] [Google Scholar]
  29. Vladimirov Y. A., Olenev V. I., Suslova T. B., Cheremisina Z. P. Lipid peroxidation in mitochondrial membrane. Adv Lipid Res. 1980;17:173–249. doi: 10.1016/b978-0-12-024917-6.50011-2. [DOI] [PubMed] [Google Scholar]
  30. WILLS E. D. MECHANISMS OF LIPID PEROXIDE FORMATION IN TISSUES. ROLE OF METALS AND HAEMATIN PROTEINS IN THE CATALYSIS OF THE OXIDATION UNSATURATED FATTY ACIDS. Biochim Biophys Acta. 1965 Apr 5;98:238–251. doi: 10.1016/0005-2760(65)90118-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES