Abstract
1. The concentration of glucose 1,6-bisphosphate, a potent regulator of muscle glucose metabolism, was examined in embryonic muscle cells in culture. 2. The concentration in fused myotubes was twice that in unfused myoblasts. 3. The effect of various hormones and agonists on the glucose 1,6-bisphosphate concentration in both pre- and post-fusion muscle cells was examined. In pre-fusion cells no effect of adrenaline or cyclic AMP was observed, but stimulation by vasopressin, adrenaline + propranolol, ionophore A23187 and dibutyryl cyclic GMP significantly decreased glucose 1,6-bisphosphate. In post-fusion cells similar effects were observed, except that stimulation by adrenaline and by dibutyryl cyclic AMP significantly increased metabolite concentration. 4. All effects increased with time (over a 1 h period), except for that of vasopressin, which was transient. 5. The changes in glucose 1,6-bisphosphate concentration were accompanied by changes in the fructose 1,6-bisphosphate/fructose 6-phosphate ratio, implying an effect on phosphofructokinase activity.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beitner R., Cohen T. J. Opposite effects of dibutyryl cyclic GMP and dibutyryl cyclic AMP on glucose 1,6-diphosphate levels and the activities of glucose 1,6-diphosphate phosphatase and phosphofructokinase in diaphragm muscle. FEBS Lett. 1980 Jun 30;115(2):197–200. doi: 10.1016/0014-5793(80)81167-7. [DOI] [PubMed] [Google Scholar]
- Beitner R., Haberman S., Cycowitz T. The effect of cyclic GMP on phosphofructokinase from rat tissues. Biochim Biophys Acta. 1977 Jun 10;482(2):330–340. doi: 10.1016/0005-2744(77)90246-7. [DOI] [PubMed] [Google Scholar]
- Beitner R., Nordenberg J. Inhibition of 6-phosphogluconate dehydrogenase (decarboxylating) by glucose 1,6-bisphosphate. Biochim Biophys Acta. 1979 Mar 7;583(2):266–269. doi: 10.1016/0304-4165(79)90434-3. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bréant B., Keppens S., De Wulf H. Heterologous desensitization of the cyclic AMP-independent glycogenolytic response in rat liver cells. Biochem J. 1981 Dec 15;200(3):509–514. doi: 10.1042/bj2000509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claus T. H., Schlumpf J., Pilkis J., Johnson R. A., Pilkis S. J. Evidence for a new activator of rat liver phosphofructokinase. Biochem Biophys Res Commun. 1981 Jan 30;98(2):359–366. doi: 10.1016/0006-291x(81)90848-2. [DOI] [PubMed] [Google Scholar]
- Eyer P., Hofer H. W., Krystek E., Pette D. Synthesis of glucose 1,6-biphosphate by the action of crystalline rabbit muscle phosphofructokinase. Eur J Biochem. 1971 May 28;20(2):153–159. doi: 10.1111/j.1432-1033.1971.tb01373.x. [DOI] [PubMed] [Google Scholar]
- Furuya E., Uyeda K. An activation factor of liver phosphofructokinase. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5861–5864. doi: 10.1073/pnas.77.10.5861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haberman S., Beitner R. Proceedings: Glucose 1,6-diphosphate, a new effector of hexokinase type II. Isr J Med Sci. 1975 Nov;11(11):1180–1181. [PubMed] [Google Scholar]
- Hems D. A., Whitton P. D. Control of hepatic glycogenolysis. Physiol Rev. 1980 Jan;60(1):1–50. doi: 10.1152/physrev.1980.60.1.1. [DOI] [PubMed] [Google Scholar]
- Hems D. A., Whitton P. D., Ma G. Y. Metabolic actions of vasopressin, glucagon and adrenalin in the intact rat. Biochim Biophys Acta. 1975 Nov 10;411(1):155–164. doi: 10.1016/0304-4165(75)90294-9. [DOI] [PubMed] [Google Scholar]
- Hems D. A., Whitton P. D. Stimulation by vasopressin of glycogen breakdown and gluconeogenesis in the perfused rat liver. Biochem J. 1973 Nov;136(3):705–709. doi: 10.1042/bj1360705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofer H. W., Pette D. Wirkungen und Wechselwirkungen von Substraten und Effektoren an der Phosphofructokinase des Kaninchen-Skeletmuskels. Hoppe Seylers Z Physiol Chem. 1968 Oct;349(10):1378–1392. [PubMed] [Google Scholar]
- Livni L., Beitner R. Proceedings: Regulation of the multiple forms of phosphoglucomutase. Isr J Med Sci. 1975 Nov;11(11):1181–1181. [PubMed] [Google Scholar]
- Mörikofer-Zwez S., Stoecklin F. B., Walter P. Fructose 1,6-bisphosphatase in rat liver cytosol: activation after glucagon treatment in vivo and inhibition by fructose 2,6-bisphosphate in vitro. Biochem Biophys Res Commun. 1981 Jul 16;101(1):104–111. doi: 10.1016/s0006-291x(81)80016-2. [DOI] [PubMed] [Google Scholar]
- Parent J. B., Tallman J. F., Henneberry R. C., Fishman P. H. Appearance of beta-adrenergic receptors and catecholamine-responsive adenylate cyclase activity during fusion of avian embryonic muscle cells. J Biol Chem. 1980 Aug 25;255(16):7782–7786. [PubMed] [Google Scholar]
- Pilkis S. J., El-Maghrabi M. R., McGrane M. M., Pilkis J., Claus T. H. The role of fructose 2,6-bisphosphate in regulation of fructose-1,6-bisphosphatase. J Biol Chem. 1981 Nov 25;256(22):11489–11495. [PubMed] [Google Scholar]
- Pilkis S. J., El-Maghrabi M. R., Pilkis J., Claus T. H., Cumming D. A. Fructose 2,6-bisphosphate. A new activator of phosphofructokinase. J Biol Chem. 1981 Apr 10;256(7):3171–3174. [PubMed] [Google Scholar]
- Richards C. S., Furuya E., Uyeda K. Regulation of fructose 2,6-P2 concentration in isolated hepatocytes. Biochem Biophys Res Commun. 1981 Jun;100(4):1673–1679. doi: 10.1016/0006-291x(81)90711-7. [DOI] [PubMed] [Google Scholar]
- Schudt C., Pette D. Ca2+ -ions as coupling agents in enzymatic differentiation and carbohydrate metabolism of cultured muscle cells. Adv Enzyme Regul. 1977 Oct 3;16:121–139. doi: 10.1016/0065-2571(78)90070-5. [DOI] [PubMed] [Google Scholar]
- Uyeda K., Furuya E., Luby L. J. The effect of natural and synthetic D-fructose 2,6-bisphosphate on the regulatory kinetic properties of liver and muscle phosphofructokinases. J Biol Chem. 1981 Aug 25;256(16):8394–8399. [PubMed] [Google Scholar]
- Van Schaftingen E., Hers H. G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc Natl Acad Sci U S A. 1981 May;78(5):2861–2863. doi: 10.1073/pnas.78.5.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Hue L., Hers H. G. Control of the fructose-6-phosphate/fructose 1,6-bisphosphate cycle in isolated hepatocytes by glucose and glucagon. Role of a low-molecular-weight stimulator of phosphofructokinase. Biochem J. 1980 Dec 15;192(3):887–895. doi: 10.1042/bj1920887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Hue L., Hers H. G. Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J. 1980 Dec 15;192(3):897–901. doi: 10.1042/bj1920897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Schaftingen E., Jett M. F., Hue L., Hers H. G. Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3483–3486. doi: 10.1073/pnas.78.6.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Bosch J., Schudt C., Pette D. Quantitative investigation on Ca++-and pH-dependence of muscle cell fusion in vitro. Biochem Biophys Res Commun. 1972 Jul 25;48(2):326–332. doi: 10.1016/s0006-291x(72)80054-8. [DOI] [PubMed] [Google Scholar]