Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Sep 1;205(3):623–630. doi: 10.1042/bj2050623

Lectin affinity chromatography of glycopeptides and oligosaccharides from normal and lectin-resistant Chinese-hamster ovary cells.

L A Hunt
PMCID: PMC1158530  PMID: 6890813

Abstract

The [3H]mannose-labelled glycopeptides from two lectin-resistant lines of Chinese-hamster ovary cells were fractionated by chromatography on lentil lectin-Sepharose and concanavalin A-agarose columns and subsequently analysed by gel filtration in comparison with the glycopeptides of the parental cell line. Essentially all of the [3H]mannose-labelled asparaginyl-oligosaccharides from the 'single-mutant' cells selected for resistance to phytohaemagglutinin and the 'double-mutant' cells selected for additional resistance to concanavalin A were not bound to lentil lectin, whereas approximately one-sixth of the parental-cell glycopeptides were bound and specifically eluted with alpha-methyl mannoside. These bound and eluted glycopeptides represented a specific subset of the complex acidic-type asparaginyl-oligosaccharides. The percentage of radiolabelled glycopeptides and oligosaccharides from each cell line that were specifically bound to concanavalin A was consistent with the relative sensitivities of the three cell lines to this lectin. The major radiolabelled species in the endoglycosidase digest of the 'double-mutant'-cell glycopeptides (Man4GlcNAc1-size neutral oligosaccharides) were not bound to concanavalin A, whereas essentially all of the other neutral-type oligosaccharides were bound. In addition, the larger neutral-type oligosaccharides (Man8--9GlcNAc1) were more strongly bound to concanavalin A than were either the smaller neutral-type or the di-antennary acidic-type structures.

Full text

PDF
623

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baenziger J. U., Fiete D. Structural determinants of concanavalin A specificity for oligosaccharides. J Biol Chem. 1979 Apr 10;254(7):2400–2407. [PubMed] [Google Scholar]
  2. Harpaz N., Schachter H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi alpha-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. J Biol Chem. 1980 May 25;255(10):4894–4902. [PubMed] [Google Scholar]
  3. Hunt L. A. Altered synthesis and processing of oligosaccharides of vesicular stomatitis virus glycoprotein in different lectin-resistant Chinese hamster ovary cell lines. J Virol. 1980 Aug;35(2):362–370. doi: 10.1128/jvi.35.2.362-370.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hunt L. A. CHO cells selected for phytohemagglutinin and con A resistance are defective in both early and late stages of protein glycosylation. Cell. 1980 Sep;21(2):407–415. doi: 10.1016/0092-8674(80)90477-8. [DOI] [PubMed] [Google Scholar]
  5. Hunt L. A., Etchison J. R., Summers D. F. Oligosaccharide chains are trimmed during synthesis of the envelope glycoprotein of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1978 Feb;75(2):754–758. doi: 10.1073/pnas.75.2.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hunt L. A., Lamph W., Wright S. E. Transformation-dependent alterations in the oligosaccharides of Prague C Rous sarcoma virus glycoproteins. J Virol. 1981 Jan;37(1):207–215. doi: 10.1128/jvi.37.1.207-215.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hunt L. A. Lectin affinity chromatography of Sindbis and Rous sarcoma virus glycopeptides and oligosaccharides. J Virol Methods. 1982 May;4(4-5):283–295. doi: 10.1016/0166-0934(82)90075-1. [DOI] [PubMed] [Google Scholar]
  8. Hunt L. A. Sindbis virus glycoproteins acquire unusual neutral oligosaccharides in both normal and lectin-resistant Chinese Hamster ovary cell lines. Virology. 1981 Sep;113(2):534–543. doi: 10.1016/0042-6822(81)90181-1. [DOI] [PubMed] [Google Scholar]
  9. Hunt L. A., Summers D. F. Glycosylation of vesicular stomatitis virus glycoprotein in virus-infected HeLa cells. J Virol. 1976 Dec;20(3):646–657. doi: 10.1128/jvi.20.3.646-657.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kornfeld K., Reitman M. L., Kornfeld R. The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J Biol Chem. 1981 Jul 10;256(13):6633–6640. [PubMed] [Google Scholar]
  11. Kornfeld S., Rogers J., Gregory W. The nature of the cell surface receptor site for Lens culinaris phytohemagglutinin. J Biol Chem. 1971 Nov;246(21):6581–6586. [PubMed] [Google Scholar]
  12. Li E., Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem. 1978 Nov 10;253(21):7762–7770. [PubMed] [Google Scholar]
  13. Ogata S., Muramatsu T., Kobata A. Fractionation of glycopeptides by affinity column chromatography on concanavalin A-sepharose. J Biochem. 1975 Oct;78(4):687–696. doi: 10.1093/oxfordjournals.jbchem.a130956. [DOI] [PubMed] [Google Scholar]
  14. Robertson M. A., Etchison J. R., Robertson J. S., Summers D. F., Stanley P. Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistnat CHO cells. Cell. 1978 Mar;13(3):515–526. doi: 10.1016/0092-8674(78)90325-2. [DOI] [PubMed] [Google Scholar]
  15. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  16. Stanley P., Carver J. P. Lectin receptors and lectin resistance in chinese hamster ovary cells. Adv Exp Med Biol. 1977;84:265–284. doi: 10.1007/978-1-4684-3279-4_13. [DOI] [PubMed] [Google Scholar]
  17. Stanley P., Narasimhan S., Siminovitch L., Schachter H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine--glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3323–3327. doi: 10.1073/pnas.72.9.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stanley P., Siminovitch L. Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet. 1977 Jul;3(4):391–405. doi: 10.1007/BF01542968. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES