Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Jul 15;206(1):147–152. doi: 10.1042/bj2060147

Limitations of commonly used spectrophotometric assay methods for phosphoenolypyruvate carboxykinase activity in crude extracts of muscle.

D A Duff, K Snell
PMCID: PMC1158560  PMID: 6289811

Abstract

Phosphoenolpyruvate carboxykinase activity in crude extracts of muscle has frequently been determined by using a continuous spectrophotometric method, which is shown to grossly overestimate enzyme activity. NADH oxidation attributed to phosphoenolpyruvate carboxykinase activity in the assay is due to lactate production. Under the normal assay conditions. Na+ ions stimulate pyruvate kinase, providing pyruvate for lactate formation by lactate dehydrogenase and sufficiently to account for most of the observed NADH oxidation.

Full text

PDF
147

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard F. J., Hanson R. W. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. Biochem J. 1967 Sep;104(3):866–871. doi: 10.1042/bj1040866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bentle L. A., Lardy H. A. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J Biol Chem. 1976 May 25;251(10):2916–2921. [PubMed] [Google Scholar]
  3. Chang H. C., Lane M. D. The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1966 May 25;241(10):2413–2420. [PubMed] [Google Scholar]
  4. Crabtree B., Higgins S. J., Newsholme E. A. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase and fructose diphosphatase in muscles from vertebrates and invertebrates. Biochem J. 1972 Nov;130(2):391–396. doi: 10.1042/bj1300391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KACHMAR J. F., BOYER P. D. Kinetic analysis of enzyme reactions. II. The potassium activation and calcium inhibition of pyruvic phosphoferase. J Biol Chem. 1953 Feb;200(2):669–682. [PubMed] [Google Scholar]
  6. Kamm K. E., Zatzman M. L., Jones A. W., South F. E. Effects of temperature on ionic transport in aortas from rat and ground squirrel. Am J Physiol. 1979 Jul;237(1):C23–C30. doi: 10.1152/ajpcell.1979.237.1.C23. [DOI] [PubMed] [Google Scholar]
  7. McLane J. A., Holloszy J. O. Glycogen synthesis from lactate in the three types of skeletal muscle. J Biol Chem. 1979 Jul 25;254(14):6548–6553. [PubMed] [Google Scholar]
  8. Newsholme E. A., Brand K., Lang J., Stanley J. C., Williams T. The maximum activities of enzymes that are involved in substrate cycles in liver and muscle of obese mice. Biochem J. 1979 Aug 15;182(2):621–624. doi: 10.1042/bj1820621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Newsholme E. A., Williams T. The role of phosphoenolpyruvate carboxykinase in amino acid metabolism in muscle. Biochem J. 1978 Nov 15;176(2):623–626. doi: 10.1042/bj1760623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nolte J., Brdiczka D., Pette D. Intracellular distribution of phosphoenolpyruvate carboxylase and (NADP) malate dehydrogenase in different muscle types. Biochim Biophys Acta. 1972 Oct 12;284(2):497–507. doi: 10.1016/0005-2744(72)90148-9. [DOI] [PubMed] [Google Scholar]
  11. Odedra B. R., Palmer T. N. A putative pathway of glyconeogenesis in skeletal muscle. Biosci Rep. 1981 Feb;1(2):157–165. doi: 10.1007/BF01117013. [DOI] [PubMed] [Google Scholar]
  12. Opie L. H., Newsholme E. A. The activities of fructose 1,6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carboxykinase in white muscle and red muscle. Biochem J. 1967 May;103(2):391–399. doi: 10.1042/bj1030391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Petrescu I., Bojan O., Saied M., Bârzu O., Schmidt F., Kühnle H. F. Determination of phosphoenolpyruvate carboxykinase activity with deoxyguanosine 5'-diphosphate as nucleotide substrate. Anal Biochem. 1979 Jul 15;96(2):279–281. doi: 10.1016/0003-2697(79)90582-7. [DOI] [PubMed] [Google Scholar]
  14. Snell K., Duff D. A. Muscle phosphoenolpyruvate carboxykinase activity and alanine release in progressively starved rats. Int J Biochem. 1979;10(5):423–426. doi: 10.1016/0020-711x(79)90066-1. [DOI] [PubMed] [Google Scholar]
  15. Snell K., Duff D. A. The release of alanine by rat diaphragm muscle in vitro. Biochem J. 1977 Feb 15;162(2):399–403. doi: 10.1042/bj1620399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Snell K. Muscle alanine synthesis and hepatic gluconeogenesis. Biochem Soc Trans. 1980 Apr;8(2):205–213. doi: 10.1042/bst0080205. [DOI] [PubMed] [Google Scholar]
  17. Zammit V. A., Beis I., Newsholme E. A. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis. Biochem J. 1978 Sep 15;174(3):989–998. doi: 10.1042/bj1740989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zammit V. A., Newsholme E. A. Properties of pyruvate kinase and phosphoenolpyruvate carboxykinase in relation to the direction and regulation of phosphoenolpyruvate metabolism in muscles of the frog and marine invertebrates. Biochem J. 1978 Sep 15;174(3):979–987. doi: 10.1042/bj1740979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zammit V. A., Newsholme E. A. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates. Biochem J. 1976 Dec 15;160(3):447–462. doi: 10.1042/bj1600447. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES