Abstract
1. Intracellular recordings were made in pentobarbitone-anaesthetized rats from sixty-eight neurones located in the rostral ventrolateral medulla (RVLM), which responded with inhibition (latency, 33.6 +/- 9.3 ms) after stimulation of the aortic depressor nerve with short bursts of pulses. This inhibition was due to chloride- and voltage-dependent IPSPs. 2. Seventeen neurones could be excited antidromically after stimulation in the T2 spinal segment (conduction velocity 1.9-8.5 m.s-1) and were classified as RVLM presympathetic vasomotor neurones. 3. "Spontaneously' active neurones (n = 29) displayed a largely irregular pattern of firing, with no clear relationship between the level of the membrane potential and cycles of phrenic nerve activity at end-tidal CO2 < 5.0%. Cardiac cycle-related shifts of the membrane potential were not considered indicative of baroreceptor input as they could be due to movement artifacts. 4. All neurones displayed large synaptic activity (EPSPs and IPSPs, peak-to-peak amplitude > 5.0 mV). The depolarizing IPSPs observed during injection of chloride and/or negative current consisted of a phasic and a tonic component. 5. The on-going activity of these neurones resulted from synaptic inputs, with individual action potentials usually preceded by identifiable fast EPSPs. 6. No evidence was found for the presence of gradual depolarizations (autodepolarizations) between individual action potentials, and therefore under these experimental conditions the activity of RVLM presympathetic neurones did not depend on intrinsic pacemaker properties. 7. These results are consistent with the "network' hypothesis for the generation of sympathetic vasomotor tone.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams T. P., Hornby P. J., Chen K., Dasilva A. M., Gillis R. A. The non-NMDA subtype of excitatory amino acid receptor plays the major role in control of cardiovascular function by the subretrofacial nucleus in cats. J Pharmacol Exp Ther. 1994 Jul;270(1):424–432. [PubMed] [Google Scholar]
- Avanzino G. L., Ruggeri P., Blanchi D., Cogo C. E., Ermirio R., Weaver L. C. GABAB receptor-mediated mechanisms in the RVLM studied by microinjections of two GABAB receptor antagonists. Am J Physiol. 1994 May;266(5 Pt 2):H1722–H1728. doi: 10.1152/ajpheart.1994.266.5.H1722. [DOI] [PubMed] [Google Scholar]
- Barman S. M., Gebber G. L. Lateral tegmental field neurons of cat medulla: a source of basal activity of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophysiol. 1987 May;57(5):1410–1424. doi: 10.1152/jn.1987.57.5.1410. [DOI] [PubMed] [Google Scholar]
- Bryant T. H., Yoshida S., de Castro D., Lipski J. Expiratory neurons of the Bötzinger Complex in the rat: a morphological study following intracellular labeling with biocytin. J Comp Neurol. 1993 Sep 8;335(2):267–282. doi: 10.1002/cne.903350210. [DOI] [PubMed] [Google Scholar]
- Cechetto D. F., Chen S. J. Hypothalamic and cortical sympathetic responses relay in the medulla of the rat. Am J Physiol. 1992 Sep;263(3 Pt 2):R544–R552. doi: 10.1152/ajpregu.1992.263.3.R544. [DOI] [PubMed] [Google Scholar]
- Connor J. A. Neural pacemakers and rhythmicity. Annu Rev Physiol. 1985;47:17–28. doi: 10.1146/annurev.ph.47.030185.000313. [DOI] [PubMed] [Google Scholar]
- Cravo S. L., Morrison S. F. The caudal ventrolateral medulla is a source of tonic sympathoinhibition. Brain Res. 1993 Sep 3;621(1):133–136. doi: 10.1016/0006-8993(93)90308-a. [DOI] [PubMed] [Google Scholar]
- Dampney R. A., Blessing W. W., Tan E. Origin of tonic GABAergic inputs to vasopressor neurons in the subretrofacial nucleus of the rabbit. J Auton Nerv Syst. 1988 Oct;24(3):227–239. doi: 10.1016/0165-1838(88)90123-3. [DOI] [PubMed] [Google Scholar]
- Dampney R. A. The subretrofacial vasomotor nucleus: anatomical, chemical and pharmacological properties and role in cardiovascular regulation. Prog Neurobiol. 1994 Feb;42(2):197–227. doi: 10.1016/0301-0082(94)90064-7. [DOI] [PubMed] [Google Scholar]
- Dembowsky K. Integrative properties of sympathetic preganglionic neurones within the thoracic spinal cord. Clin Exp Hypertens. 1995 Jan-Feb;17(1-2):313–321. doi: 10.3109/10641969509087073. [DOI] [PubMed] [Google Scholar]
- Dembowsky K., McAllen R. M. Baroreceptor inhibition of subretrofacial neurons: evidence from intracellular recordings in the cat. Neurosci Lett. 1990 Mar 26;111(1-2):139–143. doi: 10.1016/0304-3940(90)90358-g. [DOI] [PubMed] [Google Scholar]
- Granata A. R., Kitai S. T. Intracellular analysis in vivo of different barosensitive bulbospinal neurons in the rat rostral ventrolateral medulla. J Neurosci. 1992 Jan;12(1):1–20. doi: 10.1523/JNEUROSCI.12-01-00001.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guyenet P. G., Filtz T. M., Donaldson S. R. Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res. 1987 Mar 31;407(2):272–284. doi: 10.1016/0006-8993(87)91105-x. [DOI] [PubMed] [Google Scholar]
- Guyenet P. G., Haselton J. R., Sun M. K. Sympathoexcitatory neurons of the rostroventrolateral medulla and the origin of the sympathetic vasomotor tone. Prog Brain Res. 1989;81:105–116. doi: 10.1016/s0079-6123(08)62002-6. [DOI] [PubMed] [Google Scholar]
- Haselton J. R., Guyenet P. G. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am J Physiol. 1989 Mar;256(3 Pt 2):R739–R750. doi: 10.1152/ajpregu.1989.256.3.R739. [DOI] [PubMed] [Google Scholar]
- Hayes K., Calaresu F. R., Weaver L. C. Pontine reticular neurons provide tonic excitation to neurons in rostral ventrolateral medulla in rats. Am J Physiol. 1994 Jan;266(1 Pt 2):R237–R244. doi: 10.1152/ajpregu.1994.266.1.R237. [DOI] [PubMed] [Google Scholar]
- Jeske I., Morrison S. F., Cravo S. L., Reis D. J. Identification of baroreceptor reflex interneurons in the caudal ventrolateral medulla. Am J Physiol. 1993 Jan;264(1 Pt 2):R169–R178. doi: 10.1152/ajpregu.1993.264.1.R169. [DOI] [PubMed] [Google Scholar]
- Kangrga I. M., Loewy A. D. Whole-cell recordings from visualized C1 adrenergic bulbospinal neurons: ionic mechanisms underlying vasomotor tone. Brain Res. 1995 Jan 30;670(2):215–232. doi: 10.1016/0006-8993(94)01282-m. [DOI] [PubMed] [Google Scholar]
- Kanjhan R., Lipski J., Kruszewska B., Rong W. A comparative study of pre-sympathetic and Bötzinger neurons in the rostral ventrolateral medulla (RVLM) of the rat. Brain Res. 1995 Nov 13;699(1):19–32. doi: 10.1016/0006-8993(95)00814-7. [DOI] [PubMed] [Google Scholar]
- Kiely J. M., Gordon F. J. Non-NMDA receptors in the rostral ventrolateral medulla mediate somatosympathetic pressor responses. J Auton Nerv Syst. 1993 Jun;43(3):231–239. doi: 10.1016/0165-1838(93)90329-s. [DOI] [PubMed] [Google Scholar]
- Kruszewska B., Lipski J., Kanjhan R. An electrophysiological and morphological study of esophageal motoneurons in rats. Am J Physiol. 1994 Feb;266(2 Pt 2):R622–R632. doi: 10.1152/ajpregu.1994.266.2.R622. [DOI] [PubMed] [Google Scholar]
- Lewis D. I., Coote J. H. The actions of 5-hydroxytryptamine on the membrane of putative sympatho-excitatory neurones in the rostral ventrolateral medulla of the adult rat in vitro. Brain Res. 1993 Apr 23;609(1-2):103–109. doi: 10.1016/0006-8993(93)90861-g. [DOI] [PubMed] [Google Scholar]
- Lipski J., Kanjhan R., Kruszewska B., Rong W. F. Criteria for intracellular identification of pre-sympathetic neurons in the rostral ventrolateral medulla in the rat. Clin Exp Hypertens. 1995 Jan-Feb;17(1-2):51–65. doi: 10.3109/10641969509087054. [DOI] [PubMed] [Google Scholar]
- Lipski J., Kanjhan R., Kruszewska B., Smith M. Barosensitive neurons in the rostral ventrolateral medulla of the rat in vivo: morphological properties and relationship to C1 adrenergic neurons. Neuroscience. 1995 Nov;69(2):601–618. doi: 10.1016/0306-4522(95)92652-z. [DOI] [PubMed] [Google Scholar]
- Mathieu P. A., Roberge F. A. Characteristics of pacemaker oscillations in Aplysia neurons. Can J Physiol Pharmacol. 1971 Sep;49(9):787–795. doi: 10.1139/y71-108. [DOI] [PubMed] [Google Scholar]
- McAllen R. M. Central respiratory modulation of subretrofacial bulbospinal neurones in the cat. J Physiol. 1987 Jul;388:533–545. doi: 10.1113/jphysiol.1987.sp016630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millhorn D. E., Hökfelt T., Seroogy K., Verhofstad A. A. Extent of colocalization of serotonin and GABA in neurons of the ventral medulla oblongata in rat. Brain Res. 1988 Sep 27;461(1):169–174. doi: 10.1016/0006-8993(88)90736-6. [DOI] [PubMed] [Google Scholar]
- Morrison S. F., Milner T. A., Reis D. J. Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla: relationship to sympathetic nerve activity and the C1 adrenergic cell group. J Neurosci. 1988 Apr;8(4):1286–1301. doi: 10.1523/JNEUROSCI.08-04-01286.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reis D. J., Golanov E. V., Ruggiero D. A., Sun M. K. Sympatho-excitatory neurons of the rostral ventrolateral medulla are oxygen sensors and essential elements in the tonic and reflex control of the systemic and cerebral circulations. J Hypertens Suppl. 1994 Dec;12(10):S159–S180. [PubMed] [Google Scholar]
- Ruggiero D. A., Meeley M. P., Anwar M., Reis D. J. Newly identified GABAergic neurons in regions of the ventrolateral medulla which regulate blood pressure. Brain Res. 1985 Jul 22;339(1):171–177. doi: 10.1016/0006-8993(85)90640-7. [DOI] [PubMed] [Google Scholar]
- Sapru H. N., Krieger A. J. Carotid and aortic chemoreceptor function in the rat. J Appl Physiol Respir Environ Exerc Physiol. 1977 Mar;42(3):344–348. doi: 10.1152/jappl.1977.42.3.344. [DOI] [PubMed] [Google Scholar]
- Sun M. K., Guyenet P. G. Effect of clonidine and gamma-aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Res. 1986 Mar 12;368(1):1–17. doi: 10.1016/0006-8993(86)91036-x. [DOI] [PubMed] [Google Scholar]
- Sun M. K., Guyenet P. G. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol. 1985 Dec;249(6 Pt 2):R672–R680. doi: 10.1152/ajpregu.1985.249.6.R672. [DOI] [PubMed] [Google Scholar]
- Sun M. K., Hackett J. T., Guyenet P. G. Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res. 1988 Jan 12;438(1-2):23–40. doi: 10.1016/0006-8993(88)91320-0. [DOI] [PubMed] [Google Scholar]
- Sun M. K., Young B. S., Hackett J. T., Guyenet P. G. Reticulospinal pacemaker neurons of the rat rostral ventrolateral medulla with putative sympathoexcitatory function: an intracellular study in vitro. Brain Res. 1988 Mar 1;442(2):229–239. doi: 10.1016/0006-8993(88)91508-9. [DOI] [PubMed] [Google Scholar]
- Terui N., Saeki Y., Kumada M. Barosensory neurons in the ventrolateral medulla in rabbits and their responses to various afferent inputs from peripheral and central sources. Jpn J Physiol. 1986;36(6):1141–1164. doi: 10.2170/jjphysiol.36.1141. [DOI] [PubMed] [Google Scholar]
- Trzebski A., Baradziej S. Role of the rostral ventrolateral medulla in the generation of synchronized sympathetic rhythmicities in the rat. J Auton Nerv Syst. 1992 Nov;41(1-2):129–139. doi: 10.1016/0165-1838(92)90135-4. [DOI] [PubMed] [Google Scholar]
- Willette R. N., Krieger A. J., Barcas P. P., Sapru H. N. Medullary gamma-aminobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J Pharmacol Exp Ther. 1983 Sep;226(3):893–899. [PubMed] [Google Scholar]