Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Feb 1;490(Pt 3):775–781. doi: 10.1113/jphysiol.1996.sp021185

Activation of L-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells.

L Sobrevia 1, A Nadal 1, D L Yudilevich 1, G E Mann 1
PMCID: PMC1158714  PMID: 8683475

Abstract

1. Modulation of L-arginine transport (system y+) and release of nitric oxide (NO) and prostacyclin (PGI2) by elevated glucose and insulin were investigated in human cultured umbilical vein endothelial cells. 2. Elevated glucose induced a time- (6-12 h) and concentration-dependent stimulation of L-arginine transport, which was reversible and associated with a 3-fold increase in intracellular cGMP accumulation (index of NO synthesis) and 75% decrease in PGI2 production. 3. Elevated glucose had no effect on the initial transport rates for L-serine, L-citrulline, L-leucine, L-cystine or 2-deoxyglucose. 4. Resting membrane potential was unaffected by elevated glucose whereas basal intracellular [Ca2+] increased from 65 +/- 5 nM to 136 +/- 16 nM. 5. Insulin induced a protein synthesis-dependent stimulation of L-arginine transport and increased NO and PGI2 production in cells exposed to 5 mM glucose. 6. In cells exposed to high glucose, insulin downregulated elevated rates of L-arginine transport and cGMP accumulation but had no effect on the depressed PGI2 production. 7. Our findings suggest that insulin's normal stimulatory action on human endothelial cell vasodilator pathways may be impaired under conditions of sustained hyperglycaemia.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron A. D. Hemodynamic actions of insulin. Am J Physiol. 1994 Aug;267(2 Pt 1):E187–E202. doi: 10.1152/ajpendo.1994.267.2.E187. [DOI] [PubMed] [Google Scholar]
  2. Carter T. D., Hallam T. J., Pearson J. D. Protein kinase C activation alters the sensitivity of agonist-stimulated endothelial-cell prostacyclin production to intracellular Ca2+. Biochem J. 1989 Sep 1;262(2):431–437. doi: 10.1042/bj2620431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gerritsen M. E., Burke T. M., Allen L. A. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells. Microvasc Res. 1988 Mar;35(2):153–166. doi: 10.1016/0026-2862(88)90059-3. [DOI] [PubMed] [Google Scholar]
  4. Graier W. F., Wascher T. C., Lackner L., Toplak H., Krejs G. J., Kukovetz W. R. Exposure to elevated D-glucose concentrations modulates vascular endothelial cell vasodilatory response. Diabetes. 1993 Oct;42(10):1497–1505. doi: 10.2337/diab.42.10.1497. [DOI] [PubMed] [Google Scholar]
  5. Inoguchi T., Xia P., Kunisaki M., Higashi S., Feener E. P., King G. L. Insulin's effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol. 1994 Sep;267(3 Pt 1):E369–E379. doi: 10.1152/ajpendo.1994.267.3.E369. [DOI] [PubMed] [Google Scholar]
  6. Kahn N. N., Bauman W. A., Hatcher V. B., Sinha A. K. Inhibition of platelet aggregation and the stimulation of prostacyclin synthesis by insulin in humans. Am J Physiol. 1993 Dec;265(6 Pt 2):H2160–H2167. doi: 10.1152/ajpheart.1993.265.6.H2160. [DOI] [PubMed] [Google Scholar]
  7. Kaiser N., Sasson S., Feener E. P., Boukobza-Vardi N., Higashi S., Moller D. E., Davidheiser S., Przybylski R. J., King G. L. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993 Jan;42(1):80–89. doi: 10.2337/diab.42.1.80. [DOI] [PubMed] [Google Scholar]
  8. Kao J. P., Harootunian A. T., Tsien R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989 May 15;264(14):8179–8184. [PubMed] [Google Scholar]
  9. Kim J. W., Closs E. I., Albritton L. M., Cunningham J. M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature. 1991 Aug 22;352(6337):725–728. doi: 10.1038/352725a0. [DOI] [PubMed] [Google Scholar]
  10. Lorenzi M., Cagliero E., Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985 Jul;34(7):621–627. doi: 10.2337/diab.34.7.621. [DOI] [PubMed] [Google Scholar]
  11. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  12. Muñoz M., Sweiry J. H., Mann G. E. Insulin stimulates cationic amino acid transport activity in the isolated perfused rat pancreas. Exp Physiol. 1995 Sep;80(5):745–753. doi: 10.1113/expphysiol.1995.sp003883. [DOI] [PubMed] [Google Scholar]
  13. Oliver F. J., de la Rubia G., Feener E. P., Lee M. E., Loeken M. R., Shiba T., Quertermous T., King G. L. Stimulation of endothelin-1 gene expression by insulin in endothelial cells. J Biol Chem. 1991 Dec 5;266(34):23251–23256. [PubMed] [Google Scholar]
  14. Porta M., La Selva M., Molinatti P., Molinatti G. M. Endothelial cell function in diabetic microangiopathy. Diabetologia. 1987 Aug;30(8):601–609. doi: 10.1007/BF00277315. [DOI] [PubMed] [Google Scholar]
  15. Poston L., Taylor P. D. Glaxo/MRS Young Investigator Prize. Endothelium-mediated vascular function in insulin-dependent diabetes mellitus. Clin Sci (Lond) 1995 Mar;88(3):245–255. doi: 10.1042/cs0880245. [DOI] [PubMed] [Google Scholar]
  16. Smith J. A., Lang D. Release of endothelium-derived relaxing factor from pig cultured aortic endothelial cells, as assessed by changes in endothelial cell cyclic GMP content, is inhibited by a phorbol ester. Br J Pharmacol. 1990 Mar;99(3):565–571. doi: 10.1111/j.1476-5381.1990.tb12969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sobrevia L., Cesare P., Yudilevich D. L., Mann G. E. Diabetes-induced activation of system y+ and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization. J Physiol. 1995 Nov 15;489(Pt 1):183–192. doi: 10.1113/jphysiol.1995.sp021040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med. 1994 Mar;16(3):383–391. doi: 10.1016/0891-5849(94)90040-x. [DOI] [PubMed] [Google Scholar]
  19. Tooke J. E. Microcirculation and diabetes. Br Med Bull. 1989 Jan;45(1):206–223. doi: 10.1093/oxfordjournals.bmb.a072313. [DOI] [PubMed] [Google Scholar]
  20. Wu G., Majumdar S., Zhang J., Lee H., Meininger C. J. Insulin stimulates glycolysis and pentose cycle activity in bovine microvascular endothelial cells. Comp Biochem Physiol Pharmacol Toxicol Endocrinol. 1994 Jul;108(2):179–185. doi: 10.1016/1367-8280(94)90029-9. [DOI] [PubMed] [Google Scholar]
  21. Wu J. Y., Robinson D., Kung H. J., Hatzoglou M. Hormonal regulation of the gene for the type C ecotropic retrovirus receptor in rat liver cells. J Virol. 1994 Mar;68(3):1615–1623. doi: 10.1128/jvi.68.3.1615-1623.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES