Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Mar 1;491(Pt 2):413–421. doi: 10.1113/jphysiol.1996.sp021225

Presynaptic muscarinic inhibition in bullfrog sympathetic ganglia.

W X Shen 1, J P Horn 1
PMCID: PMC1158735  PMID: 8866864

Abstract

1. Muscarinic modulation of nicotinic transmission was studied in bullfrog sympathetic ganglia by recording synaptic currents from B and C neurones. 2. Bath-applied muscarine reduced the amplitude of EPSCs recorded at < 0.2 Hz from B neurones by up to 57%. The action was reversible, showed no apparent desensitization, and had an EC50 of 102 nM. Muscarine had no effect on EPSCs in C neurones. 3. Currents evoked by ionophoretic application of ACh to B neurones were unchanged by muscarine. Muscarine increased the coefficient of variation (c.v.) of EPSC amplitude. The effect upon the ratio of c.v.2control to c.v.2muscarine was proportional to the change in mean EPSC amplitude. 4. Activation of muscarinic receptors by ACh from nerve terminals was observed by comparing trains of EPSCs in normal Ringer solution and atropine. Inhibition of EPSC amplitude by 15-40% was seen as frequency was increased from 1 to 5 Hz. The minimal latency for onset of inhibition was approximately 2 s. Stimulation at 20 Hz did not produce inhibition. 5. The results indicate that presynaptic muscarinic receptors are selectively expressed by a functional subclass of preganglionic sympathetic nerve terminals. Physiological activation of the receptors occurs during repetitive activity. The extent of autoreceptor-mediated inhibition varies as a biphasic function of stimulus frequency.

Full text

PDF
413

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. R., Brown D. A., Constanti A. M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol. 1982 Sep;330:537–572. doi: 10.1113/jphysiol.1982.sp014357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLACKMAN J. G., GINSBORG B. L., RAY C. On the quantal release of the transmitter at a sympathetic synapse. J Physiol. 1963 Jul;167:402–415. doi: 10.1113/jphysiol.1963.sp007158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachoo M., Polosa C. An AF-DX 116 sensitive inhibitory mechanism modulates nicotinic and muscarinic transmission in cat superior cervical ganglion in the presence of anticholinesterase. Can J Physiol Pharmacol. 1992 Dec;70(12):1535–1541. doi: 10.1139/y92-220. [DOI] [PubMed] [Google Scholar]
  4. Bean B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature. 1989 Jul 13;340(6229):153–156. doi: 10.1038/340153a0. [DOI] [PubMed] [Google Scholar]
  5. Bekkers J. M., Stevens C. F. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature. 1990 Aug 23;346(6286):724–729. doi: 10.1038/346724a0. [DOI] [PubMed] [Google Scholar]
  6. Bernheim L., Beech D. J., Hille B. A diffusible second messenger mediates one of the pathways coupling receptors to calcium channels in rat sympathetic neurons. Neuron. 1991 Jun;6(6):859–867. doi: 10.1016/0896-6273(91)90226-p. [DOI] [PubMed] [Google Scholar]
  7. Boland L. M., Bean B. P. Modulation of N-type calcium channels in bullfrog sympathetic neurons by luteinizing hormone-releasing hormone: kinetics and voltage dependence. J Neurosci. 1993 Feb;13(2):516–533. doi: 10.1523/JNEUROSCI.13-02-00516.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Capuzzo A., Borasio P. G., Fabbri E. Effects of oxotremorine and RMI 12330 A on [3H]acetylcholine release and adenylate cyclase activity in guinea pig superior cervical ganglion. Neurochem Res. 1988 Nov;13(11):1049–1053. doi: 10.1007/BF00973149. [DOI] [PubMed] [Google Scholar]
  9. Capuzzo A., Borasio P. G., Fabbri E. Presynaptic muscarinic receptors in guinea pig superior cervical ganglion. Neurosci Lett. 1989 Sep 25;104(1-2):88–92. doi: 10.1016/0304-3940(89)90334-0. [DOI] [PubMed] [Google Scholar]
  10. Clapham D. E. Direct G protein activation of ion channels? Annu Rev Neurosci. 1994;17:441–464. doi: 10.1146/annurev.ne.17.030194.002301. [DOI] [PubMed] [Google Scholar]
  11. Collier B., Johnson G., Kirpekar S. M., Prat J. The release of acetylcholine and of catecholamine from the cat's adrenal gland. Neuroscience. 1984 Nov;13(3):957–964. doi: 10.1016/0306-4522(84)90110-6. [DOI] [PubMed] [Google Scholar]
  12. Connor E. A., Levy S. M., Parsons R. L. Kinetic analysis of atropine-induced alterations in bullfrog ganglionic fast synaptic currents. J Physiol. 1983 Apr;337:137–158. doi: 10.1113/jphysiol.1983.sp014616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
  15. Dodd J., Horn J. P. Muscarinic inhibition of sympathetic C neurones in the bullfrog. J Physiol. 1983 Jan;334:271–291. doi: 10.1113/jphysiol.1983.sp014494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dujic Z., Roerig D. L., Schedewie H. K., Kampine J. P., Bosnjak Z. J. Presynaptic modulation of ganglionic ACh release by muscarinic and nicotinic receptors. Am J Physiol. 1990 Aug;259(2 Pt 2):R288–R293. doi: 10.1152/ajpregu.1990.259.2.R288. [DOI] [PubMed] [Google Scholar]
  17. Elmslie K. S., Kammermeier P. J., Jones S. W. Reevaluation of Ca2+ channel types and their modulation in bullfrog sympathetic neurons. Neuron. 1994 Jul;13(1):217–228. doi: 10.1016/0896-6273(94)90471-5. [DOI] [PubMed] [Google Scholar]
  18. Frieling T., Cooke H. J., Wood J. D. Synaptic transmission in submucosal ganglia of guinea pig distal colon. Am J Physiol. 1991 Jun;260(6 Pt 1):G842–G849. doi: 10.1152/ajpgi.1991.260.6.G842. [DOI] [PubMed] [Google Scholar]
  19. Horn J. P., Stofer W. D. Spinal origins of preganglionic B and C neurons that innervate paravertebral sympathetic ganglia nine and ten of the bullfrog. J Comp Neurol. 1988 Feb 1;268(1):71–83. doi: 10.1002/cne.902680108. [DOI] [PubMed] [Google Scholar]
  20. Ivanoff A. Y., Smith P. A. In vivo activity of B- and C-neurones in the paravertebral sympathetic ganglia of the bullfrog. J Physiol. 1995 Jun 15;485(Pt 3):797–815. doi: 10.1113/jphysiol.1995.sp020770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones S. W. Muscarinic and peptidergic excitation of bull-frog sympathetic neurones. J Physiol. 1985 Sep;366:63–87. doi: 10.1113/jphysiol.1985.sp015785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones S. W. Time course of receptor-channel coupling in frog sympathetic neurons. Biophys J. 1991 Aug;60(2):502–507. doi: 10.1016/S0006-3495(91)82077-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kato A. C., Collier B., Ilson D., Wright J. M. The effect of atropine upon acetylcholine release from cat superior cervical ganglia and rat cortical slices: measurement by a radio-enzymic method. Can J Physiol Pharmacol. 1975 Dec;53(6):1050–1057. doi: 10.1139/y75-146. [DOI] [PubMed] [Google Scholar]
  24. Kilbinger H. Modulation by oxotremorine and atropine of acetylcholine release evoked by electrical stimulation of the myenteric plexus of the guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1977 Nov;300(2):145–151. doi: 10.1007/BF00505045. [DOI] [PubMed] [Google Scholar]
  25. Koketsu K., Yamada M. Presynaptic muscarinic receptors inhibiting active acetylcholine release in the bullfrog sympathetic ganglion. Br J Pharmacol. 1982 Sep;77(1):75–82. doi: 10.1111/j.1476-5381.1982.tb09271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MARTIN A. R. A further study of the statistical composition on the end-plate potential. J Physiol. 1955 Oct 28;130(1):114–122. doi: 10.1113/jphysiol.1955.sp005397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morita K., North R. A., Tokimasa T. Muscarinic presynaptic inhibition of synaptic transmission in myenteric plexus of guinea-pig ileum. J Physiol. 1982 Dec;333:141–149. doi: 10.1113/jphysiol.1982.sp014444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. North R. A., Slack B. E., Surprenant A. Muscarinic M1 and M2 receptors mediate depolarization and presynaptic inhibition in guinea-pig enteric nervous system. J Physiol. 1985 Nov;368:435–452. doi: 10.1113/jphysiol.1985.sp015867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sawynok J., Jhamandas K. Muscarinic feedback inhibition of acetylcholine release from the myenteric plexus in the quinea pig ileum and its status after chronic exposure to morphine. Can J Physiol Pharmacol. 1977 Aug;55(4):909–916. doi: 10.1139/y77-121. [DOI] [PubMed] [Google Scholar]
  30. Schulman J. A., Weight F. F. Synaptic transmission: long-lasting potentiation by a postsynaptic mechanism. Science. 1976 Dec 24;194(4272):1437–1439. doi: 10.1126/science.188131. [DOI] [PubMed] [Google Scholar]
  31. Selyanko A. A., Smith P. A., Zidichouski J. A. Effects of muscarine and adrenaline on neurones from Rana pipiens sympathetic ganglia. J Physiol. 1990 Jun;425:471–500. doi: 10.1113/jphysiol.1990.sp018114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shen W. X., Horn J. P. A presynaptic mechanism accounts for the differential block of nicotinic synapses on sympathetic B and C neurons by d-tubocurarine. J Neurosci. 1995 Jul;15(7 Pt 1):5025–5035. doi: 10.1523/JNEUROSCI.15-07-05025.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Somogyi G. T., de Groat W. C. Modulation of release of [3H]acetylcholine in the major pelvic ganglion of the rat. Am J Physiol. 1993 Jun;264(6 Pt 2):R1084–R1088. doi: 10.1152/ajpregu.1993.264.6.R1084. [DOI] [PubMed] [Google Scholar]
  34. Tack J. F., Wood J. D. Synaptic behaviour in the myenteric plexus of the guinea-pig gastric antrum. J Physiol. 1992 Jan;445:389–406. doi: 10.1113/jphysiol.1992.sp018930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tamura K., Wood J. D. Electrical and synaptic properties of myenteric plexus neurones in the terminal large intestine of the guinea-pig. J Physiol. 1989 Aug;415:275–298. doi: 10.1113/jphysiol.1989.sp017722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wanke E., Ferroni A., Malgaroli A., Ambrosini A., Pozzan T., Meldolesi J. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313–4317. doi: 10.1073/pnas.84.12.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wessler I., Eschenbruch V., Halim S., Kilbinger H. Presynaptic effects of scopolamine, oxotremorine, noradrenaline and morphine on [3H]acetylcholine release from the myenteric plexus at different stimulation frequencies and calcium concentrations. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jun;335(6):597–604. doi: 10.1007/BF00166974. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES