Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Mar 1;491(Pt 2):447–453. doi: 10.1113/jphysiol.1996.sp021228

Phospholipase A2 and protein kinase C contribute to myofilament sensitization to 5-HT in the rabbit mesenteric artery.

S J Parsons 1, M J Sumner 1, C J Garland 1
PMCID: PMC1158738  PMID: 8866867

Abstract

1. Calcium (Ca2+, 0.1-100 microM) stimulated concentration-dependent contractions in small strips from the rabbit mesenteric artery in which the smooth muscle cells had been permeabilized with Staphylococcus aureus alpha-toxin. 2. 5-Hydroxytryptamine (5-HT) and phenylephrine, each in the presence of 10 microM guanosine 5'-triphosphate (GTP), concentration-dependently stimulated additional contractions in strips sub-maximally contracted by the presence of a buffered concentration of calcium (0.3 microM). All the additional contraction was abolished with the selective inhibitor of protein kinase C, Ro 31-8220 (10 microM). 3. Quinacrine (10-50 microM), an inhibitor of phospholipase A2, selectively inhibited the sensitization to 5-HT, but did not alter the sensitization to either phenylephrine or GTP. 4. Myofilament sensitization to calcium was mimicked by exogenous arachidonic acid (300 microM, in the presence of indomethacin, miconazole and BW755c) and the stable analogue of arachidonic acid, 5,8,11,14-eicosatetrayonic acid (ETYA, 100 microM), and in both cases did not require the additional presence of GTP. Ro 31-8220, but not quinacrine, reduced the sensitization to arachidonic acid by around 30%. 5. These results indicate that G protein-linked myofilament sensitization to calcium in the mesenteric artery that follows the activation of 5-HT receptors, but not alpha 1-receptors, involves phospholipase A2. The sensitization stimulated by each of these different receptors, and a component of the response to arachidonic acid, also appears to involve the activation of protein kinase C.

Full text

PDF
447

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackwell G. J., Flower R. J., Nijkamp F. P., Vane J. R. Phospholipase A2 activity of guinea-pig isolated perfused lungs: stimulation, and inhibition by anti-inflammatory steroids. Br J Pharmacol. 1978 Jan;62(1):79–89. doi: 10.1111/j.1476-5381.1978.tb07009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choppin A., O'Connor S. E. Presence of vasoconstrictor 5HT1-like receptors revealed by precontraction of rabbit isolated mesenteric artery. Br J Pharmacol. 1995 Jan;114(2):309–314. doi: 10.1111/j.1476-5381.1995.tb13228.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davis P. D., Hill C. H., Keech E., Lawton G., Nixon J. S., Sedgwick A. D., Wadsworth J., Westmacott D., Wilkinson S. E. Potent selective inhibitors of protein kinase C. FEBS Lett. 1989 Dec 18;259(1):61–63. doi: 10.1016/0014-5793(89)81494-2. [DOI] [PubMed] [Google Scholar]
  4. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  5. Fuse I., Iwanaga T., Tai H. H. Phorbol ester, 1,2-diacylglycerol, and collagen induce inhibition of arachidonic acid incorporation into phospholipids in human platelets. J Biol Chem. 1989 Mar 5;264(7):3890–3895. [PubMed] [Google Scholar]
  6. Gong M. C., Fuglsang A., Alessi D., Kobayashi S., Cohen P., Somlyo A. V., Somlyo A. P. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem. 1992 Oct 25;267(30):21492–21498. [PubMed] [Google Scholar]
  7. Hori M., Sato K., Miyamoto S., Ozaki H., Karaki H. Different pathways of calcium sensitization activated by receptor agonists and phorbol esters in vascular smooth muscle. Br J Pharmacol. 1993 Dec;110(4):1527–1531. doi: 10.1111/j.1476-5381.1993.tb13996.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jiang M. J., Morgan K. G. Agonist-specific myosin phosphorylation and intracellular calcium during isometric contractions of arterial smooth muscle. Pflugers Arch. 1989 Apr;413(6):637–643. doi: 10.1007/BF00581814. [DOI] [PubMed] [Google Scholar]
  10. Lange-Carter C. A., Pleiman C. M., Gardner A. M., Blumer K. J., Johnson G. L. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993 Apr 16;260(5106):315–319. doi: 10.1126/science.8385802. [DOI] [PubMed] [Google Scholar]
  11. Lee M. W., Severson D. L. Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. Am J Physiol. 1994 Sep;267(3 Pt 1):C659–C678. doi: 10.1152/ajpcell.1994.267.3.C659. [DOI] [PubMed] [Google Scholar]
  12. Lester D. S., Collin C., Etcheberrigaray R., Alkon D. L. Arachidonic acid and diacylglycerol act synergistically to activate protein kinase C in vitro and in vivo. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1522–1528. doi: 10.1016/0006-291x(91)91745-x. [DOI] [PubMed] [Google Scholar]
  13. Murray M. A., Faraci F. M., Heistad D. D. Role of protein kinase C in constrictor responses of the rat basilar artery in vivo. J Physiol. 1992 Jan;445:169–179. doi: 10.1113/jphysiol.1992.sp018918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Naor Z. Is arachidonic acid a second messenger in signal transduction? Mol Cell Endocrinol. 1991 Sep;80(1-3):C181–C186. doi: 10.1016/0303-7207(91)90135-f. [DOI] [PubMed] [Google Scholar]
  15. Nishimura J., Moreland S., Ahn H. Y., Kawase T., Moreland R. S., van Breemen C. Endothelin increases myofilament Ca2+ sensitivity in alpha-toxin-permeabilized rabbit mesenteric artery. Circ Res. 1992 Oct;71(4):951–959. doi: 10.1161/01.res.71.4.951. [DOI] [PubMed] [Google Scholar]
  16. Nishimura J., Moreland S., Moreland R. S., van Breemen C. Regulation of the Ca(2+)-force relationship in permeabilized arterial smooth muscle. Adv Exp Med Biol. 1991;304:111–127. doi: 10.1007/978-1-4684-6003-2_11. [DOI] [PubMed] [Google Scholar]
  17. Rokolya A., Ahn H. Y., Moreland S., van Breemen C., Moreland R. S. A hypothesis for the mechanism of receptor and G-protein-dependent enhancement of vascular smooth muscle myofilament Ca2+ sensitivity. Can J Physiol Pharmacol. 1994 Nov;72(11):1420–1426. doi: 10.1139/y94-205. [DOI] [PubMed] [Google Scholar]
  18. Satoh S., Kreutz R., Wilm C., Ganten D., Pfitzer G. Augmented agonist-induced Ca(2+)-sensitization of coronary artery contraction in genetically hypertensive rats. Evidence for altered signal transduction in the coronary smooth muscle cells. J Clin Invest. 1994 Oct;94(4):1397–1403. doi: 10.1172/JCI117475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schoeffter P., Waeber C., Palacios J. M., Hoyer D. The 5-hydroxytryptamine 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra. Naunyn Schmiedebergs Arch Pharmacol. 1988 Jun;337(6):602–608. doi: 10.1007/BF00175784. [DOI] [PubMed] [Google Scholar]
  20. Seager J. M., Murphy T. V., Garland C. J. Importance of inositol (1,4,5)-trisphosphate, intracellular Ca2+ release and myofilament Ca2+ sensitization in 5-hydroxytryptamine-evoked contraction of rabbit mesenteric artery. Br J Pharmacol. 1994 Feb;111(2):525–532. doi: 10.1111/j.1476-5381.1994.tb14769.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shinomura T., Asaoka Y., Oka M., Yoshida K., Nishizuka Y. Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: its possible implications. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5149–5153. doi: 10.1073/pnas.88.12.5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith G. L., Miller D. J. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985 May 8;839(3):287–299. doi: 10.1016/0304-4165(85)90011-x. [DOI] [PubMed] [Google Scholar]
  23. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  24. Sumner M. J., Humphrey P. P. Sumatriptan (GR43175) inhibits cyclic-AMP accumulation in dog isolated saphenous vein. Br J Pharmacol. 1990 Feb;99(2):219–220. doi: 10.1111/j.1476-5381.1990.tb14682.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES