Abstract
1. Arginine is essential for growth in the kitten and, because of the resulting hyperammonaemia, in the adult cat an arginine-free diet is life threatening. 2. The kidney is the main site of arginine synthesis. 3. This study was performed to determine whether the cat kidney synthesizes arginine and to establish which factors, such as low citrullinaemia, defects of argininosuccinate synthase and lyase activities or high renal arginase activity, might limit renal arginine production. 4. Identified nephron segments were isolated by microdissection from collagenase-treated cat kidney. 5. Arginine metabolism was studied by incubating the nephron segments with either physiological concentrations of L-[ureido-14C]citrulline (anabolism) or L-[guanido-14C]-arginine (catabolism). Arginine and urea were measured by a micro-enzymatic method. Amino acids were measured by HPLC. 6. In cat blood, the citrulline, but not the arginine, concentration was very low by comparison with other species. 7. Arginine synthesis occurred almost entirely in the proximal tubule, the highest rate occurring in the proximal convoluted tubule and the lowest in the medullary straight proximal tubule. 8. Arginase activity was restricted to the proximal tubule. Urea production increased from the convoluted towards the medullary straight tubule. 9. The limited capacity of the cat kidney to produce arginine in vivo may result from the low blood concentration of citrulline and from the high arginase activity in the various proximal cells with the ability to synthesize arginine.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson P. A., Baker D. H., Corbin J. E. Lysine and arginine requirements of the domestic cat. J Nutr. 1979 Aug;109(8):1368–1372. doi: 10.1093/jn/109.8.1368. [DOI] [PubMed] [Google Scholar]
- Bergeron M., Morel F. Amino acid transport in rat renal tubules. Am J Physiol. 1969 May;216(5):1139–1149. doi: 10.1152/ajplegacy.1969.216.5.1139. [DOI] [PubMed] [Google Scholar]
- Bergeron M., Vadeboncoeur M. Antiluminal transport of L-arginine and L-leucine following microinjections in pertibular capillaries of the rat. Nephron. 1971;8(4):355–366. doi: 10.1159/000179938. [DOI] [PubMed] [Google Scholar]
- Dhanakoti S. N., Brosnan J. T., Herzberg G. R., Brosnan M. E. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol. 1990 Sep;259(3 Pt 1):E437–E442. doi: 10.1152/ajpendo.1990.259.3.E437. [DOI] [PubMed] [Google Scholar]
- Dhanakoti S. N., Brosnan M. E., Herzberg G. R., Brosnan J. T. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem J. 1992 Mar 1;282(Pt 2):369–375. doi: 10.1042/bj2820369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Featherston W. R., Rogers Q. R., Freedland R. A. Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol. 1973 Jan;224(1):127–129. doi: 10.1152/ajplegacy.1973.224.1.127. [DOI] [PubMed] [Google Scholar]
- Hartmann F., Plauth M. Intestinal glutamine metabolism. Metabolism. 1989 Aug;38(8 Suppl 1):18–24. doi: 10.1016/0026-0495(89)90134-0. [DOI] [PubMed] [Google Scholar]
- Henslee J. G., Jones M. E. Ornithine synthesis from glutamate in rat small intestinal mucosa. Arch Biochem Biophys. 1982 Nov;219(1):186–197. doi: 10.1016/0003-9861(82)90148-5. [DOI] [PubMed] [Google Scholar]
- Hus-Citharel A., Levillain O., Morel F. Sites of arginine synthesis and urea production along the nephron of a desert rodent species, Meriones shawi. Pflugers Arch. 1995 Feb;429(4):485–493. doi: 10.1007/BF00704153. [DOI] [PubMed] [Google Scholar]
- Kriz W. Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol. 1981 Jul;241(1):R3–16. doi: 10.1152/ajpregu.1981.241.1.R3. [DOI] [PubMed] [Google Scholar]
- Levillain O., Hus-Citharel A., Morel F., Bankir L. Arginine synthesis in mouse and rabbit nephron: localization and functional significance. Am J Physiol. 1993 Jun;264(6 Pt 2):F1038–F1045. doi: 10.1152/ajprenal.1993.264.6.F1038. [DOI] [PubMed] [Google Scholar]
- Levillain O., Hus-Citharel A., Morel F., Bankir L. Localization of arginine synthesis along rat nephron. Am J Physiol. 1990 Dec;259(6 Pt 2):F916–F923. doi: 10.1152/ajprenal.1990.259.6.F916. [DOI] [PubMed] [Google Scholar]
- Levillain O., Hus-Citharel A., Morel F., Bankir L. Localization of urea and ornithine production along mouse and rabbit nephrons: functional significance. Am J Physiol. 1992 Nov;263(5 Pt 2):F878–F885. doi: 10.1152/ajprenal.1992.263.5.F878. [DOI] [PubMed] [Google Scholar]
- Morris J. G., Rogers Q. R. Ammonia intoxication in the near-adult cat as a result of a dietary deficiency of arginine. Science. 1978 Jan 27;199(4327):431–432. doi: 10.1126/science.619464. [DOI] [PubMed] [Google Scholar]
- Morris J. G., Rogers Q. R. Arginine: an essential amino acid for the cat. J Nutr. 1978 Dec;108(12):1944–1953. doi: 10.1093/jn/108.12.1944. [DOI] [PubMed] [Google Scholar]
- Morris J. G., Rogers Q. R., Winterrowd D. L., Kamikawa E. M. The utilization of ornithine and citrulline by the growing kitten. J Nutr. 1979 Apr;109(4):724–729. doi: 10.1093/jn/109.4.724. [DOI] [PubMed] [Google Scholar]
- Porembska Z., Barańczyk A., Jachimowicz J. Arginase isoenzymes in liver and kidney of some mammals. Acta Biochim Pol. 1971;18(1):77–85. [PubMed] [Google Scholar]
- RATNER S., PETRACK B. The mechanism of arginine synthesis from citrulline in kidney. J Biol Chem. 1953 Jan;200(1):175–185. [PubMed] [Google Scholar]
- Ratner S. Enzymes of arginine and urea synthesis. Adv Enzymol Relat Areas Mol Biol. 1973;39:1–90. doi: 10.1002/9780470122846.ch1. [DOI] [PubMed] [Google Scholar]
- Rogers Q. R., Morris J. G., Freedland R. A. Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cat. Enzyme. 1977;22(5):348–356. doi: 10.1159/000458816. [DOI] [PubMed] [Google Scholar]
- Rogers Q. R., Phang J. M. Deficiency of pyrroline-5-carboxylate synthase in the intestinal mucosa of the cat. J Nutr. 1985 Jan;115(1):146–150. doi: 10.1093/jn/115.1.146. [DOI] [PubMed] [Google Scholar]
- Ross G., Dunn D., Jones M. E. Ornithine synthesis from glutamate in rat intestinal mucosa homogenates: evidence for the reduction of glutamate to gamma-glutamyl semialdehyde. Biochem Biophys Res Commun. 1978 Nov 14;85(1):140–147. doi: 10.1016/s0006-291x(78)80021-7. [DOI] [PubMed] [Google Scholar]
- Skrzypek-Osiecka I., Robin Y., Porembska Z. Purification of rat kidney arginases A1 and A4 and their subcellular distribution. Acta Biochim Pol. 1983;30(1):83–92. [PubMed] [Google Scholar]
- Uribe D., Krawiec D. R., Twardock A. R., Gelberg H. B. Quantitative renal scintigraphic determination of the glomerular filtration rate in cats with normal and abnormal kidney function, using 99mTc-diethylenetriaminepentaacetic acid. Am J Vet Res. 1992 Jul;53(7):1101–1107. [PubMed] [Google Scholar]
- Windmueller H. G., Spaeth A. E. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys. 1975 Dec;171(2):662–672. doi: 10.1016/0003-9861(75)90078-8. [DOI] [PubMed] [Google Scholar]
