Abstract
1. With the use of whole-cell patch clamp recordings in slices of guinea-pig substantia gelatinosa (SG), we studied the serotonin (5-HT)- and noradrenaline (NA)-mediated inhibition of glutamate-mediated EPSCs evoked from primary afferent stimulation. 2. The frequency of spontaneous EPSPs was reduced by 5-HT and NA. 3. The inhibition of EPSCs caused by 5-HT was mediated by the 5-HT1D receptor subtype, since the 5-HT1D agonist, sumatriptan (1 microM), was effective. 4. NA and the alpha 2-agonist, 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK 14304), decreased the EPSCs and this inhibition was blocked by the alpha 2-antagonists, idazoxan (1 microM) and yohimbine (1 microM). 5. The 5-HT-releasing agent, fenfluramine (10 microM), and the Na-releasing agent, amphetamine (1 microM), also depressed EPSCs. Pretreatment of slices with the 5-HT-depleting agent, p-chloro-amphetamine (10 microM), attenuated the inhibition of fenfluramine but failed to antagonize the effects of exogenously applied 5-HT. 6. These in vitro results suggest that presynaptic inhibition of glutamate release from primary afferents can provide another mechanism to explain the antinociceptive effects of 5-HT and NA obtained in vivo.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aimone L. D., Jones S. L., Gebhart G. F. Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain. 1987 Oct;31(1):123–136. doi: 10.1016/0304-3959(87)90012-1. [DOI] [PubMed] [Google Scholar]
- Baba H., Yoshimura M., Nishi S., Shimoji K. Synaptic responses of substantia gelatinosa neurones to dorsal column stimulation in rat spinal cord in vitro. J Physiol. 1994 Jul 1;478(Pt 1):87–99. doi: 10.1113/jphysiol.1994.sp020232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbaro N. M., Hammond D. L., Fields H. L. Effects of intrathecally administered methysergide and yohimbine on microstimulation-produced antinociception in the rat. Brain Res. 1985 Sep 23;343(2):223–229. doi: 10.1016/0006-8993(85)90738-3. [DOI] [PubMed] [Google Scholar]
- Bennett G. J., Abdelmoumene M., Hayashi H., Dubner R. Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol. 1980 Dec 15;194(4):809–827. doi: 10.1002/cne.901940407. [DOI] [PubMed] [Google Scholar]
- Bowker R. M., Abbott L. C. Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent: evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurons, but not from the nucleus raphe magnus. Brain Res. 1990 Mar 26;512(1):15–25. doi: 10.1016/0006-8993(90)91164-c. [DOI] [PubMed] [Google Scholar]
- CARLSSON A., MAGNUSSON T., ROSENGREN E. 5-HYDROXYTRYPTAMINE OF THE SPINAL CORD NORMALLY AND AFTER TRANSECTION. Experientia. 1963 Jul 15;19:359–359. doi: 10.1007/BF02152316. [DOI] [PubMed] [Google Scholar]
- Carstens E., Klumpp D., Randić M., Zimmermann M. Effect of iontophoretically applied 5-hydroxytryptamine on the excitability of single primary afferent C- and A-fibers in the cat spinal cord. Brain Res. 1981 Sep 7;220(1):151–158. doi: 10.1016/0006-8993(81)90218-3. [DOI] [PubMed] [Google Scholar]
- Clark F. M., Proudfit H. K. Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception. Brain Res. 1991 Feb 1;540(1-2):105–115. doi: 10.1016/0006-8993(91)90496-i. [DOI] [PubMed] [Google Scholar]
- Daval G., Vergé D., Basbaum A. I., Bourgoin S., Hamon M. Autoradiographic evidence of serotonin1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neurosci Lett. 1987 Dec 16;83(1-2):71–76. doi: 10.1016/0304-3940(87)90218-7. [DOI] [PubMed] [Google Scholar]
- Dunlap K., Fischbach G. D. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol. 1981 Aug;317:519–535. doi: 10.1113/jphysiol.1981.sp013841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Go V. L., Yaksh T. L. Release of substance P from the cat spinal cord. J Physiol. 1987 Oct;391:141–167. doi: 10.1113/jphysiol.1987.sp016731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gobel S. Golgi studies of the neurons in layer II of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol. 1978 Jul 15;180(2):395–413. doi: 10.1002/cne.901800213. [DOI] [PubMed] [Google Scholar]
- Grudt T. J., Williams J. T., Travagli R. A. Inhibition by 5-hydroxytryptamine and noradrenaline in substantia gelatinosa of guinea-pig spinal trigeminal nucleus. J Physiol. 1995 May 15;485(Pt 1):113–120. doi: 10.1113/jphysiol.1995.sp020716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grudt T. J., Williams J. T. mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat. J Neurosci. 1994 Mar;14(3 Pt 2):1646–1654. doi: 10.1523/JNEUROSCI.14-03-01646.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. W., Cotman C. W. Effects of acidic amino acid antagonists on paired-pulse potentiation at the lateral perforant path. Exp Brain Res. 1983;52(3):455–460. doi: 10.1007/BF00238039. [DOI] [PubMed] [Google Scholar]
- Holz G. G., 4th, Kream R. M., Spiegel A., Dunlap K. G proteins couple alpha-adrenergic and GABAb receptors to inhibition of peptide secretion from peripheral sensory neurons. J Neurosci. 1989 Feb;9(2):657–666. doi: 10.1523/JNEUROSCI.09-02-00657.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howe J. R., Yaksh T. L., Go V. L. The effect of unilateral dorsal root ganglionectomies or ventral rhizotomies on alpha 2-adrenoceptor binding to, and the substance P, enkephalin, and neurotensin content of, the cat lumbar spinal cord. Neuroscience. 1987 May;21(2):385–394. doi: 10.1016/0306-4522(87)90129-1. [DOI] [PubMed] [Google Scholar]
- Jones S. L., Gebhart G. F. Characterization of coeruleospinal inhibition of the nociceptive tail-flick reflex in the rat: mediation by spinal alpha 2-adrenoceptors. Brain Res. 1986 Feb 5;364(2):315–330. doi: 10.1016/0006-8993(86)90844-9. [DOI] [PubMed] [Google Scholar]
- Jones S. L., Gebhart G. F. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat. J Neurophysiol. 1987 Jul;58(1):138–159. doi: 10.1152/jn.1987.58.1.138. [DOI] [PubMed] [Google Scholar]
- Kumazawa T., Perl E. R. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol. 1978 Feb 1;177(3):417–434. doi: 10.1002/cne.901770305. [DOI] [PubMed] [Google Scholar]
- Light A. R., Perl E. R. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol. 1979 Jul 15;186(2):117–131. doi: 10.1002/cne.901860202. [DOI] [PubMed] [Google Scholar]
- Limberger N., Trendelenburg A. U., Starke K. Pharmacological characterization of presynaptic alpha 2-autoreceptors in rat submaxillary gland and heart atrium. Br J Pharmacol. 1992 Sep;107(1):246–255. doi: 10.1111/j.1476-5381.1992.tb14494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marszalec W., Scroggs R. S., Anderson E. G. Serotonin-induced reduction of the calcium-dependent plateau in frog dorsal root ganglion cells is blocked by serotonergic agents acting at 5-hydroxytryptamine1A sites. J Pharmacol Exp Ther. 1988 Nov;247(2):399–404. [PubMed] [Google Scholar]
- Mokha S. S., McMillan J. A., Iggo A. Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat. Exp Brain Res. 1986;61(3):597–606. doi: 10.1007/BF00237586. [DOI] [PubMed] [Google Scholar]
- North R. A., Yoshimura M. The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol. 1984 Apr;349:43–55. doi: 10.1113/jphysiol.1984.sp015141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang I. H., Vasko M. R. Morphine and norepinephrine but not 5-hydroxytryptamine and gamma-aminobutyric acid inhibit the potassium-stimulated release of substance P from rat spinal cord slices. Brain Res. 1986 Jun 25;376(2):268–279. doi: 10.1016/0006-8993(86)90189-7. [DOI] [PubMed] [Google Scholar]
- Pazos A., Palacios J. M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 1985 Nov 4;346(2):205–230. doi: 10.1016/0006-8993(85)90856-x. [DOI] [PubMed] [Google Scholar]
- Reddy S. V., Maderdrut J. L., Yaksh T. L. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther. 1980 Jun;213(3):525–533. [PubMed] [Google Scholar]
- Sagen J., Winker M. A., Proudfit H. K. Hypoalgesia induced by the local injection of phentolamine in the nucleus raphe magnus: blockade by depletion of spinal cord monoamines. Pain. 1983 Jul;16(3):253–263. doi: 10.1016/0304-3959(83)90113-6. [DOI] [PubMed] [Google Scholar]
- Scroggs R. S., Anderson E. G. 5-HT1 receptor agonists reduce the Ca+ component of sensory neuron action potentials. Eur J Pharmacol. 1990 Mar 20;178(2):229–232. doi: 10.1016/0014-2999(90)90479-p. [DOI] [PubMed] [Google Scholar]
- Takano Y., Yaksh T. L. Relative efficacy of spinal alpha-2 agonists, dexmedetomidine, clonidine and ST-91, determined in vivo by using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, an irreversible antagonist. J Pharmacol Exp Ther. 1991 Aug;258(2):438–446. [PubMed] [Google Scholar]
- Todorovic S., Anderson E. G. Serotonin preferentially hyperpolarizes capsaicin-sensitive C type sensory neurons by activating 5-HT1A receptors. Brain Res. 1992 Jul 10;585(1-2):212–218. doi: 10.1016/0006-8993(92)91209-w. [DOI] [PubMed] [Google Scholar]
- Trombley P. Q., Westbrook G. L. Excitatory synaptic transmission in cultures of rat olfactory bulb. J Neurophysiol. 1990 Aug;64(2):598–606. doi: 10.1152/jn.1990.64.2.598. [DOI] [PubMed] [Google Scholar]
- Yaksh T. L. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav. 1985 May;22(5):845–858. doi: 10.1016/0091-3057(85)90537-4. [DOI] [PubMed] [Google Scholar]
- Yaksh T. L., Wilson P. R. Spinal serotonin terminal system mediates antinociception. J Pharmacol Exp Ther. 1979 Mar;208(3):446–453. [PubMed] [Google Scholar]
- Yoshimura M., Jessell T. Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord. J Physiol. 1990 Nov;430:315–335. doi: 10.1113/jphysiol.1990.sp018293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Yassir N., Fleetwood-Walker S. M. A 5-HT1-type receptor mediates the antinociceptive effect of nucleus raphe magnus stimulation in the rat. Brain Res. 1990 Jul 16;523(1):92–99. doi: 10.1016/0006-8993(90)91639-x. [DOI] [PubMed] [Google Scholar]
