Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Mar 15;491(Pt 3):707–718. doi: 10.1113/jphysiol.1996.sp021251

ATP activates non-selective cation channels and calcium release in inner hair cells of the guinea-pig cochlea.

M Sugasawa 1, C Erostegui 1, C Blanchet 1, D Dulon 1
PMCID: PMC1158812  PMID: 8815205

Abstract

1. ATP-evoked currents and Ca2+ signals were simultaneously recorded in isolated inner hair cells (IHC) of guinea-pig cochlea by combining conventional whole-cell or perforated patch clamp recording with indo-1 dual emission microfluorometry. 2. In most IHCs, voltage clamped near resting membrane potential (-40 mV), extracellular ATP evoked a rapid inward current (time constant, 150 ms). This current was concomitant with a slow rise in [Ca2+]i (time constant, 5 s). The ATP-evoked inward currents could be repeated several times with only a small run-down in amplitude (< 10%), while the ATP-evoked Ca2+ responses showed a rapid run-down (> 80% at the third ATP application). 3. The current-voltage relationship of ATP-evoked currents showed a reversal potential at -11 +/- 6 mV (n = 8), suggesting that ATP essentially activated a non-specific cationic conductance. On the contrary, the amplitude of the ATP-evoked Ca2+ responses did not show significant dependence on holding membrane potential. 4. The Ca2+ response showed an apparent Kd for ATP (EC50, 1.8 +/- 0.3 microM; Hill coefficient, 1.0 +/- 0.1) eightfold smaller than for the evoked currents (EC50, 13.7 +/- 3.0 microM; Hill coefficient, 2.0 +/- 0.7). 5. Perfusion with high extracellular Ca2+ solution (10 mM CaCl2) reduced the amplitude of the ATP-evoked currents by 90%, while perfusion with zero Ca2+ solution increased it by more than 100%. However, similar variations in external Ca2+ concentration did not change the amplitude of the ATP-evoked Ca2+ responses. Furthermore, intracellular heparin (1 mg mL-1), a potent inhibitor of InsP3 receptors, did not significantly change the amplitude of ATP-evoked currents but reduced the ATP-evoked Ca2+ response, suggesting again that the latter is related to Ca2+ release from intracellular stores. 6. The results suggested that two types of P2-purinergic receptor are expressed in IHCs: ATP-gated ion channels and ATP-activated metabotropic receptors. At submicromolar ATP concentrations, the metabotropic receptors raising intracellular [Ca2+] would hyperpolarize IHCs via Ca(2+)-sensitive K+ channels. The ATP-gated ion channels activated at higher ATP concentrations would mainly have a depolarizing effect on IHCs.

Full text

PDF
707

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashmore J. F., Ohmori H. Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol. 1990 Sep;428:109–131. doi: 10.1113/jphysiol.1990.sp018203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brake A. J., Wagenbach M. J., Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature. 1994 Oct 6;371(6497):519–523. doi: 10.1038/371519a0. [DOI] [PubMed] [Google Scholar]
  3. Dulon D., Moataz R., Mollard P. Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium. 1993 Mar;14(3):245–254. doi: 10.1016/0143-4160(93)90071-d. [DOI] [PubMed] [Google Scholar]
  4. Hoyle C. H., Knight G. E., Burnstock G. Suramin antagonizes responses to P2-purinoceptor agonists and purinergic nerve stimulation in the guinea-pig urinary bladder and taenia coli. Br J Pharmacol. 1990 Mar;99(3):617–621. doi: 10.1111/j.1476-5381.1990.tb12979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Issa N. P., Hudspeth A. J. Clustering of Ca2+ channels and Ca(2+)-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7578–7582. doi: 10.1073/pnas.91.16.7578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kiang N. Y., Rho J. M., Northrop C. C., Liberman M. C., Ryugo D. K. Hair-cell innervation by spiral ganglion cells in adult cats. Science. 1982 Jul 9;217(4555):175–177. doi: 10.1126/science.7089553. [DOI] [PubMed] [Google Scholar]
  7. Kros C. J., Crawford A. C. Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol. 1990 Feb;421:263–291. doi: 10.1113/jphysiol.1990.sp017944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kujawa S. G., Erostegui C., Fallon M., Crist J., Bobbin R. P. Effects of adenosine 5'-triphosphate and related agonists on cochlear function. Hear Res. 1994 Jun 1;76(1-2):87–100. doi: 10.1016/0378-5955(94)90091-4. [DOI] [PubMed] [Google Scholar]
  9. Marty A., Neher E. Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol. 1985 Oct;367:117–141. doi: 10.1113/jphysiol.1985.sp015817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mockett B. G., Housley G. D., Thorne P. R. Fluorescence imaging of extracellular purinergic receptor sites and putative ecto-ATPase sites on isolated cochlear hair cells. J Neurosci. 1994 Nov;14(11 Pt 2):6992–7007. doi: 10.1523/JNEUROSCI.14-11-06992.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Murase K., Ryu P. D., Randic M. Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett. 1989 Aug 14;103(1):56–63. doi: 10.1016/0304-3940(89)90485-0. [DOI] [PubMed] [Google Scholar]
  12. Nakagawa T., Akaike N., Kimitsuki T., Komune S., Arima T. ATP-induced current in isolated outer hair cells of guinea pig cochlea. J Neurophysiol. 1990 May;63(5):1068–1074. doi: 10.1152/jn.1990.63.5.1068. [DOI] [PubMed] [Google Scholar]
  13. Nakazawa K., Fujimori K., Takanaka A., Inoue K. An ATP-activated conductance in pheochromocytoma cells and its suppression by extracellular calcium. J Physiol. 1990 Sep;428:257–272. doi: 10.1113/jphysiol.1990.sp018211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nilles R., Järlebark L., Zenner H. P., Heilbronn E. ATP-induced cytoplasmic [Ca2+] increases in isolated cochlear outer hair cells. Involved receptor and channel mechanisms. Hear Res. 1994 Feb;73(1):27–34. doi: 10.1016/0378-5955(94)90279-8. [DOI] [PubMed] [Google Scholar]
  15. Roberts W. M. Spatial calcium buffering in saccular hair cells. Nature. 1993 May 6;363(6424):74–76. doi: 10.1038/363074a0. [DOI] [PubMed] [Google Scholar]
  16. Ueno S., Ishibashi H., Akaike N. Perforated-patch method reveals extracellular ATP-induced K+ conductance in dissociated rat nucleus solitarii neurons. Brain Res. 1992 Nov 27;597(1):176–179. doi: 10.1016/0006-8993(92)91523-h. [DOI] [PubMed] [Google Scholar]
  17. Valera S., Hussy N., Evans R. J., Adami N., North R. A., Surprenant A., Buell G. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature. 1994 Oct 6;371(6497):516–519. doi: 10.1038/371516a0. [DOI] [PubMed] [Google Scholar]
  18. Westfall D. P., Sedaa K. O., Shinozuka K., Bjur R. A., Buxton I. L. ATP as a cotransmitter. Ann N Y Acad Sci. 1990;603:300–310. doi: 10.1111/j.1749-6632.1990.tb37681.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES