Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Mar 15;491(Pt 3):871–879. doi: 10.1113/jphysiol.1996.sp021264

The peptide ACTH(1-39), adrenal growth and steroidogenesis in the sheep fetus after disconnection of the hypothalamus and pituitary.

I D Phillips 1, J T Ross 1, J A Owens 1, I R Young 1, I C McMillen 1
PMCID: PMC1158825  PMID: 8815218

Abstract

1. We have investigated the role of the fetal hypothalamo-pituitary axis in the control of adrenocortical growth and steroidogenesis in the sheep fetus during late gestation. Plasma concentrations of ACTH(1-39) increased between 120-125 and 136-142 days (P < 0.05), but did not change after surgical disconnection of the fetal hypothalamus and pituitary (HPD) at 106-120 days gestation. There was no effect of either gestational age or HPD on the circulating concentrations of the ACTH-containing precursors pro-opiomelanocortin (POMC) and pro-ACTH (the 22 kDa N-terminal portion of POMC). 2. In the fetal sheep adrenal, the relative abundance of the mRNAs of the steroidogenic enzymes CYPIIA1 and CYP21A1 increased between 130-135 and 136-140 days gestation (P < 0.05) and remained high after 141 days, whereas that of CYP17 mRNA increased after 141 days gestation (P < 0.05). The abundance of adrenal 3 beta-HSD mRNA did not change between 130 and 145 days. 3. Hypothalamo-pituitary disconnection significantly reduced the abundance of of CYPIIA1 mRNA, 3 beta-HSD mRNA and CYP17 mRNA by 3.4, 3.1 and 3.7 times, respectively, at 140-142 days gestation (P < 0.05). 4. In the intact group of fetal sheep, adrenal weight increased between 130-135 and 141-145 days (P < 0.05), but there was no change in the abundance of adrenal insulin-like growth factor II (IGF-II) mRNA across this gestational age range. Hypothalamo-pituitary disconnection significantly reduced fetal adrenal weight to 66% that of intact sheep (P < 0.01), but did not alter the abundance of IGF-II mRNA in the fetal adrenal at 140-142 days. 5. Our results suggest that the prepartum changes in adrenal growth and steroidogenesis are under the control of an intact hypothalamo-pituitary axis in late gestation and are dependent on an increase in circulating ACTH(1-39), rather than on ACTH precursors. We have found no evidence, however, for a direct-relationship between fetal adrenal growth or steroidogenesis and adrenal IGF-II mRNA between 130 and 145 days gestation.

Full text

PDF
871

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antolovich G. C., Clarke I. J., McMillen I. C., Perry R. A., Robinson P. M., Silver M., Young R. Hypothalamo-pituitary disconnection in the fetal sheep. Neuroendocrinology. 1990 Jan;51(1):1–9. doi: 10.1159/000125308. [DOI] [PubMed] [Google Scholar]
  2. Antolovich G. C., McMillen I. C., Robinson P. M., Silver M., Young I. R., Perry R. A. The effect of hypothalamo-pituitary disconnection on the functional and morphologic development of the pituitary-adrenal axis in the fetal sheep in the last third of gestation. Neuroendocrinology. 1991 Sep;54(3):254–261. doi: 10.1159/000125883. [DOI] [PubMed] [Google Scholar]
  3. Barnes R. J., Comline R. S., Silver M. The effects of bilateral adrenalectomy or hypophysectomy of the foetal lamb in utero. J Physiol. 1977 Jan;264(2):429–447. doi: 10.1113/jphysiol.1977.sp011676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Challis J. R., Brooks A. N. Maturation and activation of hypothalamic-pituitary adrenal function in fetal sheep. Endocr Rev. 1989 May;10(2):182–204. doi: 10.1210/edrv-10-2-182. [DOI] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Chung B. C., Matteson K. J., Voutilainen R., Mohandas T. K., Miller W. L. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8962–8966. doi: 10.1073/pnas.83.23.8962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crosby S. R., Stewart M. F., Ratcliffe J. G., White A. Direct measurement of the precursors of adrenocorticotropin in human plasma by two-site immunoradiometric assay. J Clin Endocrinol Metab. 1988 Dec;67(6):1272–1277. doi: 10.1210/jcem-67-6-1272. [DOI] [PubMed] [Google Scholar]
  8. Durand P., Cathiard A. M., Locatelli A., Dazord A., Saez J. M. Spontaneous and adrenocorticotropin (ACTH)-induced maturation of the responsiveness of ovine fetal adrenal cells to in vitro stimulation by ACTH and cholera toxin. Endocrinology. 1981 Dec;109(6):2117–2123. doi: 10.1210/endo-109-6-2117. [DOI] [PubMed] [Google Scholar]
  9. Han V. K., Lu F., Bassett N., Yang K. P., Delhanty P. J., Challis J. R. Insulin-like growth factor-II (IGF-II) messenger ribonucleic acid is expressed in steroidogenic cells of the developing ovine adrenal gland: evidence of an autocrine/paracrine role for IGF-II. Endocrinology. 1992 Dec;131(6):3100–3109. doi: 10.1210/endo.131.6.1446644. [DOI] [PubMed] [Google Scholar]
  10. Hotta M., Baird A. Differential effects of transforming growth factor type beta on the growth and function of adrenocortical cells in vitro. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7795–7799. doi: 10.1073/pnas.83.20.7795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Houghton D. C., Young I. R., McMillen I. C. Evidence for hypothalamic control of the diurnal rhythms in prolactin and melatonin in the fetal sheep during late gestation. Endocrinology. 1995 Jan;136(1):218–223. doi: 10.1210/endo.136.1.7828534. [DOI] [PubMed] [Google Scholar]
  12. Jones C. T., Roebuck M. M. ACTH peptides and the development of the fetal adrenal. J Steroid Biochem. 1980 Jan;12:77–82. doi: 10.1016/0022-4731(80)90253-8. [DOI] [PubMed] [Google Scholar]
  13. Li J., Saunders J. C., Gilmour R. S., Silver M., Fowden A. L. Insulin-like growth factor-II messenger ribonucleic acid expression in fetal tissues of the sheep during late gestation: effects of cortisol. Endocrinology. 1993 May;132(5):2083–2089. doi: 10.1210/endo.132.5.8477658. [DOI] [PubMed] [Google Scholar]
  14. Lorence M. C., Murry B. A., Trant J. M., Mason J. I. Human 3 beta-hydroxysteroid dehydrogenase/delta 5----4isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology. 1990 May;126(5):2493–2498. doi: 10.1210/endo-126-5-2493. [DOI] [PubMed] [Google Scholar]
  15. Matteson K. J., Phillips J. A., 3rd, Miller W. L., Chung B. C., Orlando P. J., Frisch H., Ferrandez A., Burr I. M. P450XXI (steroid 21-hydroxylase) gene deletions are not found in family studies of congenital adrenal hyperplasia. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5858–5862. doi: 10.1073/pnas.84.16.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mulvogue H. M., McMillen I. C., Robinson P. M., Perry R. A. Immunocytochemical localization of pro gamma MSH, gamma MSH, ACTH and beta endorphin/beta lipotrophin in the fetal sheep pituitary: an ontogenetic study. J Dev Physiol. 1986 Oct;8(5):355–368. [PubMed] [Google Scholar]
  17. Myers D. A., McDonald T. J., Nathanielsz P. W. Effect of placement of dexamethasone adjacent to the ovine fetal paraventricular nucleus on adrenocortical steroid hydroxylase messenger ribonucleic acid. Endocrinology. 1992 Sep;131(3):1329–1335. doi: 10.1210/endo.131.3.1505467. [DOI] [PubMed] [Google Scholar]
  18. Ozolins I. Z., Antolovich G. C., Browne C. A., Perry R. A., Robinson P. M., Silver M., McMillen I. C. Effect of adrenalectomy or long term cortisol or adrenocorticotropin (ACTH)-releasing factor infusion on the concentration and molecular weight distribution of ACTH in fetal sheep plasma. Endocrinology. 1991 Oct;129(4):1942–1950. doi: 10.1210/endo-129-4-1942. [DOI] [PubMed] [Google Scholar]
  19. Ozolins I. Z., Young I. R., McMillen I. C. Surgical disconnection of the hypothalamus from the fetal pituitary abolishes the corticotrophic response to intrauterine hypoglycemia or hypoxemia in the sheep during late gestation. Endocrinology. 1992 May;130(5):2438–2445. doi: 10.1210/endo.130.5.1315243. [DOI] [PubMed] [Google Scholar]
  20. Perry R. A., Mulvogue H. M., McMillen I. C., Robinson P. M. Immunohistochemical localization of ACTH in the adult and fetal sheep pituitary. J Dev Physiol. 1985 Dec;7(6):397–404. [PubMed] [Google Scholar]
  21. Rainey W. E., Oka K., Magness R. R., Mason J. I. Ovine fetal adrenal synthesis of cortisol: regulation by adrenocorticotropin, angiotensin II and transforming growth factor-beta. Endocrinology. 1991 Oct;129(4):1784–1790. doi: 10.1210/endo-129-4-1784. [DOI] [PubMed] [Google Scholar]
  22. Saphier P. W., Glynn B. P., Woods R. J., Shepherd D. A., Jeacock M. K., Lowry P. J. Elevated levels of N-terminal pro-opiomelanocortin peptides in fetal sheep plasma may contribute to fetal adrenal gland development and the pre-parturient cortisol surge. Endocrinology. 1993 Sep;133(3):1459–1461. doi: 10.1210/endo.133.3.8396021. [DOI] [PubMed] [Google Scholar]
  23. Simonian M. H., Gill G. N. Regulation of the fetal human adrenal cortex: effects of adrenocorticotropin on growth and function of monolayer cultures of fetal and definitive zone cells. Endocrinology. 1981 May;108(5):1769–1779. doi: 10.1210/endo-108-5-1769. [DOI] [PubMed] [Google Scholar]
  24. Simpson E. R., Waterman M. R. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol. 1988;50:427–440. doi: 10.1146/annurev.ph.50.030188.002235. [DOI] [PubMed] [Google Scholar]
  25. Tangalakis K., Coghlan J. P., Connell J., Crawford R., Darling P., Hammond V. E., Haralambidis J., Penschow J., Wintour E. M. Tissue distribution and levels of gene expression of three steroid hydroxylases in ovine fetal adrenal glands. Acta Endocrinol (Copenh) 1989 Feb;120(2):225–232. doi: 10.1530/acta.0.1200225. [DOI] [PubMed] [Google Scholar]
  26. Voutilainen R., Miller W. L. Developmental and hormonal regulation of mRNAs for insulin-like growth factor II and steroidogenic enzymes in human fetal adrenals and gonads. DNA. 1988 Jan-Feb;7(1):9–15. doi: 10.1089/dna.1988.7.9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES