Abstract
1. A wide range of substrate concentrations (5-1600 microM) were used to screen for the presence of systems capable of transporting taurine into isolated and free-floating samples of bovine retinal pigment epithelium (RPE). Both high and low affinity systems displaying Michaelis-Menten saturation kinetics were identified. The high affinity system was characterized by a K(m) of 23 microM and a V(max) of 86.7 pmol (5 min)(-1) (4 mm disc of tissue sample)(-1). Similarly, the low affinity system was characterized by a K(m) of 507 microM and a V(max) of 344 pmol (5 min)(-1)(4 mm disc)(-1). 2. Ussing-type incubation chambers and double-label radiotracer techniques were used to assess the presence of specific taurine carriers on apical and basolateral surfaces of the RPE. High affinity carriers were shown to be present on both surfaces and the kinetic constants (K(m) and V(max)) for apical and basolateral systems were determined as 23.2 microM and 34.8 pmol (5 min)(-1) (4 mm disc)(-1) and 29 microM and 54.7 pmol (5 min)(-1)(4 mm disc)(-1), respectively. Both these high affinity systems were sodium dependent with a Hill coefficient of about 2.0 indicating that two sodium ions are required for the translocation of one molecule of taurine. The low affinity system was unevenly distributed over the two surfaces of the RPE, basolateral capacities being roughly twofold higher. The basolateral system was totally insensitive to sodium whereas the apical one with 50% sodium sensitivity suggested the presence of low affinity carrier heterogeneity. 3. A temperature-dependent mechanism for the release of pre-loaded taurine from bovine RPF was also demonstrated. 4. The effect of [K+]o trans-RPF gradients on the vectorial transport of taurine across the isolated preparation was also investigated. The results demonstrated that the direction and magnitude of taurine transport could be controlled by physiological variations in the extracellular concentration of potassium. 5. The determined kinetic parameters of the carriers were used to construct a working model of the vectorial pathway for the translocation of taurine across bovine RPE. This estimated the level of free intracellular taurine to be in the micromolar range. However, direct measurements of total RPE taurine by high performance liquid chromatography showed levels of 19.5 +/- 3.6 mM indicating that the major taurine pool in bovine RPE exists in the bound form. The model also showed that the magnitude and direction of net transport was a function of the transepithelial taurine gradient.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benyajati S., Bay S. M. Basolateral taurine transport system in reptilian renal cells. Am J Physiol. 1994 Mar;266(3 Pt 2):F439–F449. doi: 10.1152/ajprenal.1994.266.3.F439. [DOI] [PubMed] [Google Scholar]
- Benyajati S., Johnson J. L. Characteristics of renal transport of taurine in reptilian brush-border membranes. Am J Physiol. 1991 May;260(5 Pt 2):R879–R888. doi: 10.1152/ajpregu.1991.260.5.R879. [DOI] [PubMed] [Google Scholar]
- Edwards R. B. Accumulation of taurine by cultured retinal pigment epithelium of the rat. Invest Ophthalmol Vis Sci. 1977 Mar;16(3):201–208. [PubMed] [Google Scholar]
- Gaull G. E., Rassin D. K., Räihä N. C., Heinonen K. Milk protein quantity and quality in low-birth-weight infants. III. Effects on sulfur amino acids in plasma and urine. J Pediatr. 1977 Mar;90(3):348–355. doi: 10.1016/s0022-3476(77)80692-6. [DOI] [PubMed] [Google Scholar]
- Geggel H. S., Ament M. E., Heckenlively J. R., Martin D. A., Kopple J. D. Nutritional requirement for taurine in patients receiving long-term parenteral nutrition. N Engl J Med. 1985 Jan 17;312(3):142–146. doi: 10.1056/NEJM198501173120302. [DOI] [PubMed] [Google Scholar]
- Hayes K. C., Carey R. E., Schmidt S. Y. Retinal degeneration associated with taurine deficiency in the cat. Science. 1975 May 30;188(4191):949–951. doi: 10.1126/science.1138364. [DOI] [PubMed] [Google Scholar]
- Hussain A. A., Voaden M. J. Postenucleation survival of taurine uptake by pigment epithelium and choroid of the baboon eye. Exp Eye Res. 1985 Apr;40(4):643–646. doi: 10.1016/0014-4835(85)90086-7. [DOI] [PubMed] [Google Scholar]
- Knopf K., Sturman J. A., Armstrong M., Hayes K. C. Taurine: an essential nutrient for the cat. J Nutr. 1978 May;108(5):773–778. doi: 10.1093/jn/108.5.773. [DOI] [PubMed] [Google Scholar]
- Lake N. Depletion of retinal taurine by treatment with guanidinoethyl sulfonate. Life Sci. 1981 Aug 3;29(5):445–448. doi: 10.1016/0024-3205(81)90209-5. [DOI] [PubMed] [Google Scholar]
- Lake N., Marshall J., Voaden M. J. Studies on the uptake of taurine by the isolated neural retina and pigment epithelium of the frog. Biochem Soc Trans. 1975;3(4):524–525. doi: 10.1042/bst0030524. [DOI] [PubMed] [Google Scholar]
- Lake N., Marshall J., Voaden M. J. The entry of taurine into the neural retina and pigment epithelium of the frog. Brain Res. 1977 Jun 17;128(3):497–503. doi: 10.1016/0006-8993(77)90174-3. [DOI] [PubMed] [Google Scholar]
- Lambert I. H., Hoffmann E. K. Regulation of taurine transport in Ehrlich ascites tumor cells. J Membr Biol. 1993 Jan;131(1):67–79. doi: 10.1007/BF02258535. [DOI] [PubMed] [Google Scholar]
- Leibach J. W., Cool D. R., Del Monte M. A., Ganapathy V., Leibach F. H., Miyamoto Y. Properties of taurine transport in a human retinal pigment epithelial cell line. Curr Eye Res. 1993 Jan;12(1):29–36. doi: 10.3109/02713689308999493. [DOI] [PubMed] [Google Scholar]
- Miller S. S., Steinberg R. H. Potassium modulation of taurine transport across the frog retinal pigment epithelium. J Gen Physiol. 1979 Aug;74(2):237–259. doi: 10.1085/jgp.74.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S., Steinberg R. H. Transport of taurine, L-methionine and 3-o-methyl-D-glucose across frog retinal pigment epithelium. Exp Eye Res. 1976 Aug;23(2):177–189. doi: 10.1016/0014-4835(76)90201-3. [DOI] [PubMed] [Google Scholar]
- Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
- Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pasantes-Morales H., Domínguez L., Montenegro J., Morán J. A chloride-dependent component of the release of labeled GABA and taurine from the chick retina. Brain Res. 1988 Aug 30;459(1):120–130. doi: 10.1016/0006-8993(88)90291-0. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Hansen S., Kennedy J. CSF amino acids and plasma--CSF amino acid ratios in adults. J Neurochem. 1975 Mar;24(3):587–589. doi: 10.1111/j.1471-4159.1975.tb07680.x. [DOI] [PubMed] [Google Scholar]
- Pourcho R. G. Distribution of [35S]taurine in mouse retina after intravitreal and intravascular injection. Exp Eye Res. 1977 Aug;25(2):119–127. doi: 10.1016/0014-4835(77)90124-5. [DOI] [PubMed] [Google Scholar]
- Sellner P. A. The movement of organic solutes between the retina and pigment epithelium. Exp Eye Res. 1986 Oct;43(4):631–639. doi: 10.1016/s0014-4835(86)80029-x. [DOI] [PubMed] [Google Scholar]
- Sivakami S., Ganapathy V., Leibach F. H., Miyamoto Y. The gamma-aminobutyric acid transporter and its interaction with taurine in the apical membrane of the bovine retinal pigment epithelium. Biochem J. 1992 Apr 15;283(Pt 2):391–397. doi: 10.1042/bj2830391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
- Sturman J. A., Wen G. Y., Wisniewski H. M., Hayes K. C. Histochemical localization of zinc in the feline tapetum. Effect of taurine depletion. Histochemistry. 1981;72(3):341–350. doi: 10.1007/BF00501776. [DOI] [PubMed] [Google Scholar]
- Turnell D. C., Cooper J. D. Rapid assay for amino acids in serum or urine by pre-column derivatization and reversed-phase liquid chromatography. Clin Chem. 1982 Mar;28(3):527–531. [PubMed] [Google Scholar]
- Törnquist P., Alm A. Carrier-mediated transport of amino acids through the blood-retinal and the blood-brain barriers. Graefes Arch Clin Exp Ophthalmol. 1986;224(1):21–25. doi: 10.1007/BF02144127. [DOI] [PubMed] [Google Scholar]
- Voaden M. J., Hussain A. A., Chan I. P. Studies on retinitis pigmentosa in man. I. Taurine and blood platelets. Br J Ophthalmol. 1982 Dec;66(12):771–775. doi: 10.1136/bjo.66.12.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voaden M. J., Lake N., Marshall J., Morjaria B. Studies on the distribution of taurine and other neuroactive amino acids in the retina. Exp Eye Res. 1977 Sep;25(3):249–257. doi: 10.1016/0014-4835(77)90091-4. [DOI] [PubMed] [Google Scholar]
- Wright C. E., Tallan H. H., Lin Y. Y., Gaull G. E. Taurine: biological update. Annu Rev Biochem. 1986;55:427–453. doi: 10.1146/annurev.bi.55.070186.002235. [DOI] [PubMed] [Google Scholar]
