Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Jun 15;493(Pt 3):855–863. doi: 10.1113/jphysiol.1996.sp021428

Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina.

M Sugioka 1, Y Fukuda 1, M Yamashita 1
PMCID: PMC1159031  PMID: 8799905

Abstract

1. The action of adenosine triphosphate on cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in the retinal cell of early embryonic chicks with fura-2 fluorescence measurements. The fluorescence was measured from the whole neural retina dissected from chick embryos at embryonic day three (E3). 2. Bath application of ATP (> or = 30 microM; EC50, 128 microM) raised [Ca2+]i by the release of Ca2+ from intracellular Ca2+ stores, since the Ca2+ response to ATP occurred even in a Ca(2+)-free medium. 3. The Ca2+ response to ATP was mediated by P2U purinoceptors. An agonist for P2U purinoceptors, uridine triphosphate (UTP), evoked Ca2+ rises more potently (> or = 3 microM; EC50, 24 microM) than ATP. Agonists for P2X purinoceptors, alpha, beta-methylene ATP and beta, gamma-methylene ATP, or an agonist for P2Y purinoceptors, 2-methylthio ATP (500 microM each), caused no Ca2+ response. Suramin (100 microM) and Reactive Blue 2 (50 microM) almost completely blocked the Ca2+, responses to 500 microM ATP and 200 microM UTP. 4. The developmental profile of the Ca2+ response to ATP was studied from E3 to E13. The Ca2+ response to ATP was largest at E3, drastically declined towards E8 and decreased further until E11-13. 5. These results suggest that the Ca2+ mobilization by ATP via P2U purinoceptors is characteristic of early embryonic retinal cells.

Full text

PDF
855

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbracchio M. P., Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445–475. doi: 10.1016/0163-7258(94)00048-4. [DOI] [PubMed] [Google Scholar]
  2. Abbracchio M. P., Saffrey M. J., Höpker V., Burnstock G. Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience. 1994 Mar;59(1):67–76. doi: 10.1016/0306-4522(94)90099-x. [DOI] [PubMed] [Google Scholar]
  3. Barnard E. A., Burnstock G., Webb T. E. G protein-coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol Sci. 1994 Mar;15(3):67–70. doi: 10.1016/0165-6147(94)90280-1. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  6. Boarder M. R., Weisman G. A., Turner J. T., Wilkinson G. F. G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci. 1995 Apr;16(4):133–139. doi: 10.1016/s0165-6147(00)89001-x. [DOI] [PubMed] [Google Scholar]
  7. COULOMBRE A. J. Correlations of structural and biochemical changes in the developing retina of the chick. Am J Anat. 1955 Jan;96(1):153–189. doi: 10.1002/aja.1000960106. [DOI] [PubMed] [Google Scholar]
  8. Calvet G. A., Ventura A. L. Accumulation of 3H-phosphoinositides mediated by muscarinic receptors in the developing chick retina: inhibition of carbachol-induced response by glutamate receptors. J Neurochem. 1995 Mar;64(3):1064–1070. doi: 10.1046/j.1471-4159.1995.64031064.x. [DOI] [PubMed] [Google Scholar]
  9. Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
  10. Erlinge D., Yoo H., Edvinsson L., Reis D. J., Wahlestedt C. Mitogenic effects of ATP on vascular smooth muscle cells vs. other growth factors and sympathetic cotransmitters. Am J Physiol. 1993 Oct;265(4 Pt 2):H1089–H1097. doi: 10.1152/ajpheart.1993.265.4.H1089. [DOI] [PubMed] [Google Scholar]
  11. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  12. Henning R. H., Duin M., den Hertog A., Nelemans A. Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes. Br J Pharmacol. 1993 Oct;110(2):747–752. doi: 10.1111/j.1476-5381.1993.tb13875.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huang N., Wang D. J., Heppel L. A. Extracellular ATP is a mitogen for 3T3, 3T6, and A431 cells and acts synergistically with other growth factors. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7904–7908. doi: 10.1073/pnas.86.20.7904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Häggblad J., Heilbronn E. P2-purinoceptor-stimulated phosphoinositide turnover in chick myotubes. Calcium mobilization and the role of guanyl nucleotide-binding proteins. FEBS Lett. 1988 Aug 1;235(1-2):133–136. doi: 10.1016/0014-5793(88)81248-1. [DOI] [PubMed] [Google Scholar]
  15. Kubo Y. Properties of ionic currents induced by external ATP in a mouse mesodermal stem cell line. J Physiol. 1991 Oct;442:691–710. doi: 10.1113/jphysiol.1991.sp018815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lohmann F., Drews U., Donié F., Reiser G. Chick embryo muscarinic and purinergic receptors activate cytosolic Ca2+ via phosphatidylinositol metabolism. Exp Cell Res. 1991 Dec;197(2):326–329. doi: 10.1016/0014-4827(91)90441-v. [DOI] [PubMed] [Google Scholar]
  17. Miller R. J. The control of neuronal Ca2+ homeostasis. Prog Neurobiol. 1991;37(3):255–285. doi: 10.1016/0301-0082(91)90028-y. [DOI] [PubMed] [Google Scholar]
  18. Nakaoka Y., Yamashita M. Ca2+ responses to acetylcholine and adenosine triphosphate in the otocyst of chick embryo. J Neurobiol. 1995 Sep;28(1):23–34. doi: 10.1002/neu.480280104. [DOI] [PubMed] [Google Scholar]
  19. Neary J. T., Whittemore S. R., Zhu Q., Norenberg M. D. Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factors and extracellular ATP. J Neurochem. 1994 Aug;63(2):490–494. doi: 10.1046/j.1471-4159.1994.63020490.x. [DOI] [PubMed] [Google Scholar]
  20. Prada Carmen, Puga José, Pérez-Méndez Luisa, López Rosario, Ramírez Galo. Spatial and Temporal Patterns of Neurogenesis in the Chick Retina. Eur J Neurosci. 1991 Jun;3(6):559–569. doi: 10.1111/j.1460-9568.1991.tb00843.x. [DOI] [PubMed] [Google Scholar]
  21. Rathbone M. P., Middlemiss P. J., Kim J. K., Gysbers J. W., DeForge S. P., Smith R. W., Hughes D. W. Adenosine and its nucleotides stimulate proliferation of chick astrocytes and human astrocytoma cells. Neurosci Res. 1992 Feb;13(1):1–17. doi: 10.1016/0168-0102(92)90030-g. [DOI] [PubMed] [Google Scholar]
  22. Salter M. W., Hicks J. L. ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci. 1995 Apr;15(4):2961–2971. doi: 10.1523/JNEUROSCI.15-04-02961.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Salter M. W., Hicks J. L. ATP-evoked increases in intracellular calcium in neurons and glia from the dorsal spinal cord. J Neurosci. 1994 Mar;14(3 Pt 2):1563–1575. doi: 10.1523/JNEUROSCI.14-03-01563.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sheffield J. B., Fischman D. A. Intercellular junctions in the developing neural retina of the chick embryo. Z Zellforsch Mikrosk Anat. 1970;104(3):405–418. doi: 10.1007/BF00335691. [DOI] [PubMed] [Google Scholar]
  25. Yamashita M., Fukuda Y. Calcium channels and GABA receptors in the early embryonic chick retina. J Neurobiol. 1993 Dec;24(12):1600–1614. doi: 10.1002/neu.480241205. [DOI] [PubMed] [Google Scholar]
  26. Yamashita M., Yoshimoto Y., Fukuda Y. Muscarinic acetylcholine responses in the early embryonic chick retina. J Neurobiol. 1994 Sep;25(9):1144–1153. doi: 10.1002/neu.480250909. [DOI] [PubMed] [Google Scholar]
  27. Zimmermann H. Signalling via ATP in the nervous system. Trends Neurosci. 1994 Oct;17(10):420–426. doi: 10.1016/0166-2236(94)90016-7. [DOI] [PubMed] [Google Scholar]
  28. von Kügelgen I., Bültmann R., Starke K. Interaction of adenine nucleotides, UTP and suramin in mouse vas deferens: suramin-sensitive and suramin-insensitive components in the contractile effect of ATP. Naunyn Schmiedebergs Arch Pharmacol. 1990 Aug;342(2):198–205. doi: 10.1007/BF00166965. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES