Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Jan 1;498(Pt 1):231–237. doi: 10.1113/jphysiol.1997.sp021854

The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve.

G Ferretti 1, C Moia 1, J M Thomet 1, B Kayser 1
PMCID: PMC1159247  PMID: 9023781

Abstract

1. Endurance athletes (E) undergo a marked reduction of arterial O2 saturation (Sa,O2) at maximal exercise in normoxia, which disappears when they breathe hyperoxic mixtures. In addition, at a given level of hypoxia, the drop in maximal O2 consumption (VO2,max) is positively related to the individual normoxic VO2,max. 2. These data suggest that the curve relating VO2,max to PI,O2 may be steeper and perhaps less curved in E than in sedentary subjects (S) with low VO2,max values because of the greater hypoxaemia in the latter, whence the hypotheses that (i) the relationship between VO2,max and PI,O2 may be set by the shape of the oxygen equilibrium curve; and (ii) the differences between E and S may be due to the different position on the oxygen equilibrium curve on which these subjects operate. These hypotheses have been tested by performing a systematic comparison of the VO2,max or Sa,O2 vs. PI,O2 relationships in E and S. 3. On ten subjects (five S and five E), VO2,max was measured by standard procedure during cycloergometric exercise. Sa,O2 was measured by finger-tip infrared oximetry. Arterialized blood PO2 (Pa,O2) and PCO2 (Pa,CO2) were determined in 80 microliters blood samples from an ear lobe. The subjects breathed ambient air or a N2-O2 mixture with an inspired O2 fraction (FI,O2) of 0.30, 0.18, 0.16, 0.13 and 0.11, respectively, VO2,max was normalized with respect to that obtained at the highest FI,O2. 4. The relationships between Sa,O2 or normalized VO2,max and FI,O2 (or PI,O2) had similar shapes, the data for E being systematically below and significantly different from those for S. Linear relationships between Sa,O2 and normalized VO2,max, statistically equal between E and S, were found. 5. We conclude that the relationships between either VO2,max or Sa,O2 and FI,O2 (or Pa,O2) may indeed be the mirror images of one another, implying a strict link between the decrease of VO2,max in hypoxia and the shape of the oxygen equilibrium curve, as hypothesized.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANNISTER R. G., CUNNINGHAM D. J. The effects on the respiration and performance during exercise of adding oxygen to the inspired air. J Physiol. 1954 Jul 28;125(1):118–137. doi: 10.1113/jphysiol.1954.sp005145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cerretelli P. Limiting factors to oxygen transport on Mount Everest. J Appl Physiol. 1976 May;40(5):658–667. doi: 10.1152/jappl.1976.40.5.658. [DOI] [PubMed] [Google Scholar]
  3. Dempsey J. A., Hanson P. G., Henderson K. S. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984 Oct;355:161–175. doi: 10.1113/jphysiol.1984.sp015412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ekblom B., Huot R., Stein E. M., Thorstensson A. T. Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol. 1975 Jul;39(1):71–75. doi: 10.1152/jappl.1975.39.1.71. [DOI] [PubMed] [Google Scholar]
  5. Fagraeus L., Karlsson J., Linnarsson D., Saltin B. Oxygen uptake during maximal work at lowered and raised ambient air pressures. Acta Physiol Scand. 1973 Mar;87(3):411–421. doi: 10.1111/j.1748-1716.1973.tb05405.x. [DOI] [PubMed] [Google Scholar]
  6. Ferretti G. On maximal oxygen consumption in hypoxic humans. Experientia. 1990 Dec 1;46(11-12):1188–1194. doi: 10.1007/BF01936934. [DOI] [PubMed] [Google Scholar]
  7. Ferretti G., di Prampero P. E. Factors limiting maximal O2 consumption: effects of acute changes in ventilation. Respir Physiol. 1995 Feb;99(2):259–271. doi: 10.1016/0034-5687(94)00092-e. [DOI] [PubMed] [Google Scholar]
  8. Hartley L. H., Vogel J. A., Landowne M. Central, femoral, and brachial circulation during exercise in hypoxia. J Appl Physiol. 1973 Jan;34(1):87–90. doi: 10.1152/jappl.1973.34.1.87. [DOI] [PubMed] [Google Scholar]
  9. Johnson B. D., Saupe K. W., Dempsey J. A. Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol (1985) 1992 Sep;73(3):874–886. doi: 10.1152/jappl.1992.73.3.874. [DOI] [PubMed] [Google Scholar]
  10. Lawler J., Powers S. K., Thompson D. Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol (1985) 1988 Apr;64(4):1486–1492. doi: 10.1152/jappl.1988.64.4.1486. [DOI] [PubMed] [Google Scholar]
  11. MARGARIA R., CERETELLI P., MARCHI S., ROSSI L. Maximum exercise in oxygen. Int Z Angew Physiol. 1961;18:465–467. doi: 10.1007/BF00699459. [DOI] [PubMed] [Google Scholar]
  12. Margaria R., Camporesi E., Aghemo P., Sassi G. The effect of O 2 breathing on maximal aerobic power. Pflugers Arch. 1972;336(3):225–235. doi: 10.1007/BF00590047. [DOI] [PubMed] [Google Scholar]
  13. Oelz O., Howald H., Di Prampero P. E., Hoppeler H., Claassen H., Jenni R., Bühlmann A., Ferretti G., Brückner J. C., Veicsteinas A. Physiological profile of world-class high-altitude climbers. J Appl Physiol (1985) 1986 May;60(5):1734–1742. doi: 10.1152/jappl.1986.60.5.1734. [DOI] [PubMed] [Google Scholar]
  14. Piiper J., Scheid P. Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia. Respir Physiol. 1981 Dec;46(3):193–208. doi: 10.1016/0034-5687(81)90121-3. [DOI] [PubMed] [Google Scholar]
  15. Powers S. K., Lawler J., Dempsey J. A., Dodd S., Landry G. Effects of incomplete pulmonary gas exchange on VO2 max. J Appl Physiol (1985) 1989 Jun;66(6):2491–2495. doi: 10.1152/jappl.1989.66.6.2491. [DOI] [PubMed] [Google Scholar]
  16. Squires R. W., Buskirk E. R. Aerobic capacity during acute exposure to simulated altitude, 914 to 2286 meters. Med Sci Sports Exerc. 1982;14(1):36–40. doi: 10.1249/00005768-198201000-00007. [DOI] [PubMed] [Google Scholar]
  17. Stenberg J., Ekblom B., Messin R. Hemodynamic response to work at simulated altitude, 4,000 m. J Appl Physiol. 1966 Sep;21(5):1589–1594. doi: 10.1152/jappl.1966.21.5.1589. [DOI] [PubMed] [Google Scholar]
  18. Terrados N., Mizuno M., Andersen H. Reduction in maximal oxygen uptake at low altitudes; role of training status and lung function. Clin Physiol. 1985;5 (Suppl 3):75–79. doi: 10.1111/j.1475-097x.1985.tb00605.x. [DOI] [PubMed] [Google Scholar]
  19. Welch H. G., Pedersen P. K. Measurement of metabolic rate in hyperoxia. J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):725–731. doi: 10.1152/jappl.1981.51.3.725. [DOI] [PubMed] [Google Scholar]
  20. West J. B., Boyer S. J., Graber D. J., Hackett P. H., Maret K. H., Milledge J. S., Peters R. M., Jr, Pizzo C. J., Samaja M., Sarnquist F. H. Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):688–698. doi: 10.1152/jappl.1983.55.3.688. [DOI] [PubMed] [Google Scholar]
  21. West J. B. Rate of ventilatory acclimatization to extreme altitude. Respir Physiol. 1988 Dec;74(3):323–333. doi: 10.1016/0034-5687(88)90040-0. [DOI] [PubMed] [Google Scholar]
  22. Williams J. H., Powers S. K., Stuart M. K. Hemoglobin desaturation in highly trained athletes during heavy exercise. Med Sci Sports Exerc. 1986 Apr;18(2):168–173. [PubMed] [Google Scholar]
  23. Young A. J., Cymerman A., Burse R. L. The influence of cardiorespiratory fitness on the decrement in maximal aerobic power at high altitude. Eur J Appl Physiol Occup Physiol. 1985;54(1):12–15. doi: 10.1007/BF00426291. [DOI] [PubMed] [Google Scholar]
  24. di Prampero P. E., Cortili G., Mognoni P., Saibene F. Equation of motion of a cyclist. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jul;47(1):201–206. doi: 10.1152/jappl.1979.47.1.201. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES