Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Mar 15;499(Pt 3):721–732. doi: 10.1113/jphysiol.1997.sp021964

Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons.

S P Yu 1, S L Sensi 1, L M Canzoniero 1, A Buisson 1, D W Choi 1
PMCID: PMC1159290  PMID: 9130168

Abstract

1. Modulation of NMDA receptors by metabotropic glutamate receptors (mGluRs) in cultured mouse cortical neurons was investigated using whole-cell and single-channel recordings. 2. NMDA whole-cell current was reversibly attenuated by selective mGluR1/5 agonists (S)-3-hydroxyphenylglycine (3HPG; 10-200 microM), (S)-3,5-dihydroxyphenylglyeine (S-DHPG; 100 microM) and other mGluR agonists: (1S,3R)-1-aminocyclopentane-1,3-decarboxylic acid (1S,3R-ACPD; 200 microM), quisqualate (10 microM) and (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I; 100 microM). 3. The attenuation of NMDA current by 3HPG was totally eliminated by the mGluR antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG; 500 microM) and by the selective mGluR1/5 antagonist (S)-4-carboxyphenylglycine (4CPG; 300 microM). 4. mGluR2/3 agonists (2S,1'R,2'R'3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 3 microM), (S)-4-carboxy-3-hydroxyphenylglycine (4C3HPG; 100-200 microM) and (S)-4-carboxyphenylglycine (4CPG; 300 microM) did not reduce NMDA current. 5. The NMDA-induced increase in intracellular free Ca2+ measured by fura-2 Ca2+ imaging was attenuated by 3HPG (300 microM). 6. The suppression of NMDA current by 3HPG was not affected by treatments that altered intracellular Ca2+ or cAMP levels, or by the protein kinase inhibitor, staurosporine (0.1-0.5 microM). 7. The open probability (NPo) of the NMDA receptor channel in excised outside-out patches was attenuated by 3HPG but not by 4C3HPG. This 3HPG effect was blocked by MCPG. 8. The 3HPG-induced reduction of NMDA whole-cell and single-channel currents was prevented by GDP beta S (200-400 microM). Intracellular dialysis of GTP gamma S (100 microM) also reduced NMDA whole-cell current, and rendered irreversible further reduction induced by 3HPG. 9. These data suggest that a selective activation of mGluR1/5 downmodulates the NMDA receptor channel in a membrane-delimited manner, mediated by G proteins, but not by diffusible second messengers.

Full text

PDF
721

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonny B., Sukumar M., Bigay J., Chabre M., Higashijima T. The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. J Biol Chem. 1993 Feb 5;268(4):2393–2402. [PubMed] [Google Scholar]
  2. Barnes-Davies M., Forsythe I. D. Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J Physiol. 1995 Oct 15;488(Pt 2):387–406. doi: 10.1113/jphysiol.1995.sp020974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baskys A., Malenka R. C. Trans-ACPD depresses synaptic transmission in the hippocampus. Eur J Pharmacol. 1991 Jan 25;193(1):131–132. doi: 10.1016/0014-2999(91)90213-a. [DOI] [PubMed] [Google Scholar]
  4. Ben-Ari Y., Aniksztejn L., Bregestovski P. Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci. 1992 Sep;15(9):333–339. doi: 10.1016/0166-2236(92)90049-e. [DOI] [PubMed] [Google Scholar]
  5. Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
  6. Bleakman D., Rusin K. I., Chard P. S., Glaum S. R., Miller R. J. Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol Pharmacol. 1992 Aug;42(2):192–196. [PubMed] [Google Scholar]
  7. Brabet I., Mary S., Bockaert J., Pin J. P. Phenylglycine derivatives discriminate between mGluR1- and mGluR5-mediated responses. Neuropharmacology. 1995 Aug;34(8):895–903. doi: 10.1016/0028-3908(95)00079-l. [DOI] [PubMed] [Google Scholar]
  8. Buisson A., Choi D. W. The inhibitory mGluR agonist, S-4-carboxy-3-hydroxy-phenylglycine selectively attenuates NMDA neurotoxicity and oxygen-glucose deprivation-induced neuronal death. Neuropharmacology. 1995 Aug;34(8):1081–1087. doi: 10.1016/0028-3908(95)00073-f. [DOI] [PubMed] [Google Scholar]
  9. Charpak S., Gähwiler B. H., Do K. Q., Knöpfel T. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature. 1990 Oct 25;347(6295):765–767. doi: 10.1038/347765a0. [DOI] [PubMed] [Google Scholar]
  10. Chavis P., Shinozaki H., Bockaert J., Fagni L. The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells. J Neurosci. 1994 Nov;14(11 Pt 2):7067–7076. doi: 10.1523/JNEUROSCI.14-11-07067.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clapham D. E. Direct G protein activation of ion channels? Annu Rev Neurosci. 1994;17:441–464. doi: 10.1146/annurev.ne.17.030194.002301. [DOI] [PubMed] [Google Scholar]
  12. Colwell C. S., Levine M. S. Metabotropic glutamate receptors modulate N-methyl-D-aspartate receptor function in neostriatal neurons. Neuroscience. 1994 Aug;61(3):497–507. doi: 10.1016/0306-4522(94)90429-4. [DOI] [PubMed] [Google Scholar]
  13. Gibb A. J., Colquhoun D. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J Physiol. 1992 Oct;456:143–179. doi: 10.1113/jphysiol.1992.sp019331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glaum S. R., Miller R. J. Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J Neurosci. 1992 Jun;12(6):2251–2258. doi: 10.1523/JNEUROSCI.12-06-02251.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glaum S. R., Slater N. T., Rossi D. J., Miller R. J. Role of metabotropic glutamate (ACPD) receptors at the parallel fiber-Purkinje cell synapse. J Neurophysiol. 1992 Oct;68(4):1453–1462. doi: 10.1152/jn.1992.68.4.1453. [DOI] [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Harvey J., Collingridge G. L. Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br J Pharmacol. 1993 Aug;109(4):1085–1090. doi: 10.1111/j.1476-5381.1993.tb13733.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayashi Y., Momiyama A., Takahashi T., Ohishi H., Ogawa-Meguro R., Shigemoto R., Mizuno N., Nakanishi S. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature. 1993 Dec 16;366(6456):687–690. doi: 10.1038/366687a0. [DOI] [PubMed] [Google Scholar]
  19. Hayashi Y., Sekiyama N., Nakanishi S., Jane D. E., Sunter D. C., Birse E. F., Udvarhelyi P. M., Watkins J. C. Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J Neurosci. 1994 May;14(5 Pt 2):3370–3377. doi: 10.1523/JNEUROSCI.14-05-03370.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hollmann M., Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108. doi: 10.1146/annurev.ne.17.030194.000335. [DOI] [PubMed] [Google Scholar]
  21. Joly C., Gomeza J., Brabet I., Curry K., Bockaert J., Pin J. P. Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: comparison with mGluR1. J Neurosci. 1995 May;15(5 Pt 2):3970–3981. doi: 10.1523/JNEUROSCI.15-05-03970.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelso S. R., Nelson T. E., Leonard J. P. Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J Physiol. 1992 Apr;449:705–718. doi: 10.1113/jphysiol.1992.sp019110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kinney G. A., Slater N. T. Potentiation of NMDA receptor-mediated transmission in turtle cerebellar granule cells by activation of metabotropic glutamate receptors. J Neurophysiol. 1993 Feb;69(2):585–594. doi: 10.1152/jn.1993.69.2.585. [DOI] [PubMed] [Google Scholar]
  24. Koh J. Y., Palmer E., Cotman C. W. Activation of the metabotropic glutamate receptor attenuates N-methyl-D-aspartate neurotoxicity in cortical cultures. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9431–9435. doi: 10.1073/pnas.88.21.9431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lester R. A., Jahr C. E. Quisqualate receptor-mediated depression of calcium currents in hippocampal neurons. Neuron. 1990 May;4(5):741–749. doi: 10.1016/0896-6273(90)90200-y. [DOI] [PubMed] [Google Scholar]
  26. Monaghan D. T., Cotman C. W. Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci. 1985 Nov;5(11):2909–2919. doi: 10.1523/JNEUROSCI.05-11-02909.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Connor J. J., Rowan M. J., Anwyl R. Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. Nature. 1994 Feb 10;367(6463):557–559. doi: 10.1038/367557a0. [DOI] [PubMed] [Google Scholar]
  28. Pin J. P., Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 1995 Jan;34(1):1–26. doi: 10.1016/0028-3908(94)00129-g. [DOI] [PubMed] [Google Scholar]
  29. Swartz K. J., Bean B. P. Inhibition of calcium channels in rat CA3 pyramidal neurons by a metabotropic glutamate receptor. J Neurosci. 1992 Nov;12(11):4358–4371. doi: 10.1523/JNEUROSCI.12-11-04358.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomsen C., Boel E., Suzdak P. D. Actions of phenylglycine analogs at subtypes of the metabotropic glutamate receptor family. Eur J Pharmacol. 1994 Mar 15;267(1):77–84. doi: 10.1016/0922-4106(94)90227-5. [DOI] [PubMed] [Google Scholar]
  31. Vyklický L., Jr Calcium-mediated modulation of N-methyl-D-aspartate (NMDA) responses in cultured rat hippocampal neurones. J Physiol. 1993 Oct;470:575–600. doi: 10.1113/jphysiol.1993.sp019876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilsch V. W., Pidoplichko V. I., Opitz T., Shinozaki H., Reymann K. G. Metabotropic glutamate receptor agonist DCG-IV as NMDA receptor agonist in immature rat hippocampal neurons. Eur J Pharmacol. 1994 Sep 12;262(3):287–291. doi: 10.1016/0014-2999(94)90743-9. [DOI] [PubMed] [Google Scholar]
  33. Yu S. P., O'Malley D. M., Adams P. R. Regulation of M current by intracellular calcium in bullfrog sympathetic ganglion neurons. J Neurosci. 1994 Jun;14(6):3487–3499. doi: 10.1523/JNEUROSCI.14-06-03487.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES