Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Mar 15;499(Pt 3):763–771. doi: 10.1113/jphysiol.1997.sp021967

Is resting state HCO3- secretion in frog gastric fundus mucosa mediated by apical Cl(-)-HCO3- exchange?

R Caroppo 1, L Debellis 1, G Valenti 1, S Alper 1, E Frömter 1, S Curci 1
PMCID: PMC1159293  PMID: 9130171

Abstract

1. We have tested the widely accepted hypothesis that resting-state bicarbonate secretion of gastric fundus mucosa is mediated by Cl(-)-HCO3- exchange in the apical membrane of surface epithelial cells (SECs). To this end, SECs of isolated fundus mucosa of Rana esculenta were punctured with double-barrelled microelectrodes to measure intracellular pH (pHi). 2. No significant pHi changes were observed in response to changing luminal HCO3- and/or Cl- concentrations. The change in pHi (delta pHi) in response to luminal chloride substitution averaged 0.00 +/- 0.01 pH units (mean +/- S.E.M.; n = 48), and did not change after blocking putative basolateral acid/base transporters which could have masked the pHi response. 3. On the other hand, pHi responded readily and reversibly to luminal perfusion with either low-pH (pH 2.5) solution (delta pHi = -0.36 +/- 0.05; n = 4; P < 0.01) or CO2-free HCO3- Ringer solution (delta pHi = +0.10 +/- 0.01; n = 29; P < 0.001). These observations demonstrate that the solution change was effective and complete within 1 min and show that the apical membrane of SECs is permeable to CO2. 4. The apical membrane of frog SECs could not be stained with an antibody against the C-terminal end of the mouse Cl(-)-HCO3- exchanger isoform AE2, although this antibody readily stained the basolateral membrane of the oxyntopeptic cells (OCs). 5. In conclusion, the presence of a Cl(-)-HCO3- exchanger in the apical membrane of SECs of frog gastric fundus mucosa in the resting state could not be confirmed, but other models of HCO3- secretion cannot be fully excluded. Observations from electrical measurements, favouring a model of conductive HCO3- secretion, point to the OCs rather than the SECs as a site of origin of HCO3- secretion.

Full text

PDF
763

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A., Flemström G., Garner A., Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev. 1993 Oct;73(4):823–857. doi: 10.1152/physrev.1993.73.4.823. [DOI] [PubMed] [Google Scholar]
  2. Allen A., Garner A. Mucus and bicarbonate secretion in the stomach and their possible role in mucosal protection. Gut. 1980 Mar;21(3):249–262. doi: 10.1136/gut.21.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boron W. F., Waisbren S. J., Modlin I. M., Geibel J. P. Unique permeability barrier of the apical surface of parietal and chief cells in isolated perfused gastric glands. J Exp Biol. 1994 Nov;196:347–360. doi: 10.1242/jeb.196.1.347. [DOI] [PubMed] [Google Scholar]
  4. Curci S., Debellis L., Caroppo R., Frömter E. Model of bicarbonate secretion by resting frog stomach fundus mucosa. I. Transepithelial measurements. Pflugers Arch. 1994 Oct;428(5-6):648–654. doi: 10.1007/BF00374589. [DOI] [PubMed] [Google Scholar]
  5. Curci S., Schettino T., Frömter E. Histamine reduces Cl- activity in surface epithelial cells of frog gastric mucosa. Suggestive evidence for ionic coupling between surface epithelial and oxyntic cells. Pflugers Arch. 1986 Feb;406(2):204–211. doi: 10.1007/BF00586684. [DOI] [PubMed] [Google Scholar]
  6. Debellis L., Iacovelli C., Frömter E., Curci S. Model of bicarbonate secretion by resting frog stomach fundus mucosa. II. Role of the oxyntopeptic cells. Pflugers Arch. 1994 Oct;428(5-6):655–663. doi: 10.1007/BF00374590. [DOI] [PubMed] [Google Scholar]
  7. Flemström G. Cl- dependence of HCO3- transport in frog gastric mucosa. Ups J Med Sci. 1980;85(3):303–309. doi: 10.3109/03009738009179200. [DOI] [PubMed] [Google Scholar]
  8. Flemström G., Sachs T. G. Ion transport by amphibian antrum in vitro. I. General characteristics. Am J Physiol. 1975 Apr;228(4):1188–1198. doi: 10.1152/ajplegacy.1975.228.4.1188. [DOI] [PubMed] [Google Scholar]
  9. Garner A., Flemström G. Gastric HCO3--secretion in the guinea pig. Am J Physiol. 1978 Jun;234(6):E535–E541. doi: 10.1152/ajpendo.1978.234.6.E535. [DOI] [PubMed] [Google Scholar]
  10. Kiviluoto T., Mustonen H., Salo J., Kivilaakso E. Regulation of intracellular pH in isolated Necturus gastric mucosa during short-term exposure to luminal acid. Gastroenterology. 1995 Apr;108(4):999–1004. doi: 10.1016/0016-5085(95)90195-7. [DOI] [PubMed] [Google Scholar]
  11. Kondo Y., Frömter E. Evidence of chloride/bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflugers Arch. 1990 Mar;415(6):726–733. doi: 10.1007/BF02584012. [DOI] [PubMed] [Google Scholar]
  12. Kondo Y., Igarashi Y., Abe K., Tada K. New double-barreled, ion-sensitive microelectrodes for measuring intracellular Cl- activities in rabbit renal collecting ducts. Tohoku J Exp Med. 1993 Jan;169(1):51–58. doi: 10.1620/tjem.169.51. [DOI] [PubMed] [Google Scholar]
  13. Kottra G., Iacovelli C., Caroppo R., Curci S., Bakos P., Frömter E. Contribution of surface epithelial cells to total conductance of Necturus gastric fundus mucosa. Am J Physiol. 1996 Jun;270(6 Pt 1):G902–G908. doi: 10.1152/ajpgi.1996.270.6.G902. [DOI] [PubMed] [Google Scholar]
  14. Kraniak J., Koyanagi H., Fromm D. Do isolated gastric mucosal surface cells from rabbits secrete HCO3-? J Surg Res. 1995 Feb;58(2):211–217. doi: 10.1006/jsre.1995.1033. [DOI] [PubMed] [Google Scholar]
  15. O'Brien P., Rosen S., Trencis-Buck L., Silen W. Distribution of carbonic anhydrase within the gastric mucosa. Gastroenterology. 1977 May;72(5 Pt 1):870–880. [PubMed] [Google Scholar]
  16. Seidler U., Carter K., Ito S., Silen W. Effect of CO2 on pHi in rabbit parietal, chief, and surface cells. Am J Physiol. 1989 Mar;256(3 Pt 1):G466–G475. doi: 10.1152/ajpgi.1989.256.3.G466. [DOI] [PubMed] [Google Scholar]
  17. Stuart-Tilley A., Sardet C., Pouyssegur J., Schwartz M. A., Brown D., Alper S. L. Immunolocalization of anion exchanger AE2 and cation exchanger NHE-1 in distinct adjacent cells of gastric mucosa. Am J Physiol. 1994 Feb;266(2 Pt 1):C559–C568. doi: 10.1152/ajpcell.1994.266.2.C559. [DOI] [PubMed] [Google Scholar]
  18. Takeuchi K., Magee D., Critchlow J., Matthews J., Silen W. Studies of the pH gradient and thickness of frog gastric mucus gel. Gastroenterology. 1983 Feb;84(2):331–340. [PubMed] [Google Scholar]
  19. Takeuchi K., Merhav A., Silen W. Mechanism of luminal alkalinization by bullfrog fundic mucosa. Am J Physiol. 1982 Nov;243(5):G377–G388. doi: 10.1152/ajpgi.1982.243.5.G377. [DOI] [PubMed] [Google Scholar]
  20. Waisbren S. J., Geibel J. P., Modlin I. M., Boron W. F. Unusual permeability properties of gastric gland cells. Nature. 1994 Mar 24;368(6469):332–335. doi: 10.1038/368332a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES