Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Mar 15;499(Pt 3):843–848. doi: 10.1113/jphysiol.1997.sp021973

Individual differences in breathlessness during exercise, as related to ventilatory chemosensitivities in humans.

N Takano 1, S Inaishi 1, Y Zhang 1
PMCID: PMC1159299  PMID: 9130177

Abstract

1. The present study attempted to test the hypothesis that breathlessness associated with exercise hyperpnoea is greater in subjects with greater activities of the central and peripheral chemoreceptors during exercise. The chemoreceptor activities were assessed by resting estimates of hypercapnic ventilatory response (delta VE/delta PCO2, HCVR) and hypoxic ventilatory response (delta VE/-delta SO2, HVR), respectively, where VE is minute ventilation and SO2 is oxygen saturation. 2. Nine female and nine male subjects performed a 1 min incremental exercise test until exhaustion, during which breathlessness intensity (BS), assessed by a Borg category scale, and VE were measured every minute. The maximum O2 uptake (VO2,max) was also determined. 3. Using a stepwise multiple linear regression analysis, the relative contributions of not only VE, HCVR and HVR, but also VO2,max and a predicted maximum voluntary ventilation (MVVp) of the individuals to BS, were examined. 4. The analysis showed that BS = 0.1VE + 4.9HVR - 0.03MVVp + 0.55 (r2 = 0.71), indicating that VE accounted for 44% of the variance of BS, HVR for 12% and MVVp for 15%. No significant relation of HCVR and VO2,max to BS was found. 5. These results suggest a contribution of peripheral chemoreceptors to the generation of exertional breathlessness.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L., Chronos N., Lane R., Guz A. The measurement of breathlessness induced in normal subjects: individual differences. Clin Sci (Lond) 1986 Feb;70(2):131–140. doi: 10.1042/cs0700131. [DOI] [PubMed] [Google Scholar]
  2. Adams L., Lane R., Shea S. A., Cockcroft A., Guz A. Breathlessness during different forms of ventilatory stimulation: a study of mechanisms in normal subjects and respiratory patients. Clin Sci (Lond) 1985 Dec;69(6):663–672. doi: 10.1042/cs0690663. [DOI] [PubMed] [Google Scholar]
  3. Borg G. A. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. [PubMed] [Google Scholar]
  4. Byrne-Quinn E., Weil J. V., Sodal I. E., Filley G. F., Grover R. F. Ventilatory control in the athlete. J Appl Physiol. 1971 Jan;30(1):91–98. doi: 10.1152/jappl.1971.30.1.91. [DOI] [PubMed] [Google Scholar]
  5. Cherniack N. S., Altose M. D. Mechanisms of dyspnea. Clin Chest Med. 1987 Jun;8(2):207–214. [PubMed] [Google Scholar]
  6. Chonan T., Mulholland M. B., Cherniack N. S., Altose M. D. Effects of voluntary constraining of thoracic displacement during hypercapnia. J Appl Physiol (1985) 1987 Nov;63(5):1822–1828. doi: 10.1152/jappl.1987.63.5.1822. [DOI] [PubMed] [Google Scholar]
  7. Chonan T., Mulholland M. B., Leitner J., Altose M. D., Cherniack N. S. Sensation of dyspnea during hypercapnia, exercise, and voluntary hyperventilation. J Appl Physiol (1985) 1990 May;68(5):2100–2106. doi: 10.1152/jappl.1990.68.5.2100. [DOI] [PubMed] [Google Scholar]
  8. Edelman N. H., Epstein P. E., Lahiri S., Cherniack N. S. Ventilatory responses to transient hypoxia and hypercapnia in man. Respir Physiol. 1973 Apr;17(3):302–314. doi: 10.1016/0034-5687(73)90005-4. [DOI] [PubMed] [Google Scholar]
  9. Irsigler G. B. Carbon dioxide response lines in young adults: the limits of the normal response. Am Rev Respir Dis. 1976 Sep;114(3):529–536. doi: 10.1164/arrd.1976.114.3.529. [DOI] [PubMed] [Google Scholar]
  10. Lane R., Adams L., Guz A. The effects of hypoxia and hypercapnia on perceived breathlessness during exercise in humans. J Physiol. 1990 Sep;428:579–593. doi: 10.1113/jphysiol.1990.sp018229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leblanc P., Bowie D. M., Summers E., Jones N. L., Killian K. J. Breathlessness and exercise in patients with cardiorespiratory disease. Am Rev Respir Dis. 1986 Jan;133(1):21–25. doi: 10.1164/arrd.1986.133.1.21. [DOI] [PubMed] [Google Scholar]
  12. Martin B. J., Weil J. V., Sparks K. E., McCullough R. E., Grover R. F. Exercise ventilation correlates positively with ventilatory chemoresponsiveness. J Appl Physiol Respir Environ Exerc Physiol. 1978 Oct;45(4):557–564. doi: 10.1152/jappl.1978.45.4.557. [DOI] [PubMed] [Google Scholar]
  13. Nishida O., Kambe M., Yoshimi T., Shigenobu T., Masaki S. [Pulmonary function in healthy subjects and its prediction. 3. Spirography in adults (author's transl)]. Rinsho Byori. 1976;24(10):833–836. [PubMed] [Google Scholar]
  14. Nye P. C. Identification of peripheral chemoreceptor stimuli. Med Sci Sports Exerc. 1994 Mar;26(3):311–318. [PubMed] [Google Scholar]
  15. Poon C. S., Greene J. G. Control of exercise hyperpnea during hypercapnia in humans. J Appl Physiol (1985) 1985 Sep;59(3):792–797. doi: 10.1152/jappl.1985.59.3.792. [DOI] [PubMed] [Google Scholar]
  16. Rausch S. M., Whipp B. J., Wasserman K., Huszczuk A. Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J Physiol. 1991 Dec;444:567–578. doi: 10.1113/jphysiol.1991.sp018894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Read D. J. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967 Feb;16(1):20–32. doi: 10.1111/imj.1967.16.1.20. [DOI] [PubMed] [Google Scholar]
  18. Regensteiner J. G., Pickett C. K., McCullough R. E., Weil J. V., Moore L. G. Possible gender differences in the effect of exercise on hypoxic ventilatory response. Respiration. 1988;53(3):158–165. doi: 10.1159/000195409. [DOI] [PubMed] [Google Scholar]
  19. Scoggin C. H., Doekel R. D., Kryger M. H., Zwillich C. W., Weil J. V. Familial aspects of decreased hypoxic drive in endurance athletes. J Appl Physiol Respir Environ Exerc Physiol. 1978 Mar;44(3):464–468. doi: 10.1152/jappl.1978.44.3.464. [DOI] [PubMed] [Google Scholar]
  20. Shaw R. A., Schonfeld S. A., Whitcomb M. E. Progressive and transient hypoxic ventilatory drive tests in healthy subjects. Am Rev Respir Dis. 1982 Jul;126(1):37–40. doi: 10.1164/arrd.1982.126.1.37. [DOI] [PubMed] [Google Scholar]
  21. Stark R. D., Gambles S. A., Lewis J. A. Methods to assess breathlessness in healthy subjects: a critical evaluation and application to analyse the acute effects of diazepam and promethazine on breathlessness induced by exercise or by exposure to raised levels of carbon dioxide. Clin Sci (Lond) 1981 Oct;61(4):429–439. doi: 10.1042/cs0610429. [DOI] [PubMed] [Google Scholar]
  22. WRIGHT G. W., FILLEY G. F. Pulmonary fibrosis and respiratory function. Am J Med. 1951 May;10(5):642–661. doi: 10.1016/0002-9343(51)90333-6. [DOI] [PubMed] [Google Scholar]
  23. Ward S. A. Peripheral and central chemoreceptor control of ventilation during exercise in humans. Can J Appl Physiol. 1994 Sep;19(3):305–333. doi: 10.1139/h94-026. [DOI] [PubMed] [Google Scholar]
  24. Ward S. A., Whipp B. J. Effects of peripheral and central chemoreflex activation on the isopnoeic rating of breathing in exercising humans. J Physiol. 1989 Apr;411:27–43. doi: 10.1113/jphysiol.1989.sp017557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weil J. V., Byrne-Quinn E., Sodal I. E., Kline J. S., McCullough R. E., Filley G. F. Augmentation of chemosensitivity during mild exercise in normal man. J Appl Physiol. 1972 Dec;33(6):813–819. doi: 10.1152/jappl.1972.33.6.813. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES