Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Mar 1;499(Pt 2):351–359. doi: 10.1113/jphysiol.1997.sp021932

Upregulation of Na(+)-K(+)-2Cl- cotransporter activity in rat parotid acinar cells by muscarinic stimulation.

R L Evans 1, R J Turner 1
PMCID: PMC1159310  PMID: 9080365

Abstract

1. The effects of fluid secretory stimuli on the Na(+)-K(+)-2Cl- cotransporter in rat parotid acini were investigated. Cotransporter activity was measured using NH4+ as a K+ surrogate and following cotransporter-mediated NH4+ fluxes by monitoring intracellular pH. 2. A dramatic upregulation (15- to 20-fold) of acinar Na(+)-K(+)-2Cl- cotransporter activity was induced by muscarinic, alpha 1-adrenergic and peptidergic stimuli. A half-maximal effect of the muscarinic agonist carbachol was observed at approximately 0.5 microM. 3. Our results indicate that the rise in intracellular calcium concentration ([Ca2+]i) which accompanies these stimuli is both a necessary and a sufficient condition for this effect; but it is not a consequence of the KCl loss and concomitant isotonic shrinkage caused by increased [Ca2+]i as it persists when these effects are prevented. 4. The effect of muscarinic stimulation on the cotransporter can, however, be blocked by inhibitors of phospholipase A2 (4-bromophenacylbromide and manoalide), by a general inhibitor of arachidonic acid metabolism (5,8,11,14-eicosatetraynoic acid) and by specific inhibitors of the cytochrome P450 pathway (methoxsalen and ketoconazole). 5. These latter results argue strongly for the involvement of a product of the cytochrome P450 pathway of arachidonic acid metabolism in upregulation of the salivary Na(+)-K(+)-2Cl- cotransporter. 6. Owing to the complexity of the arachidonic acid cascade a wide variety of agents could potentially interfere with this upregulation of the cotransporter, and thereby result in decreased salivary fluid production. We suggest that such an effect could underlie the dry mouth (xerostomia) that occurs as an unexplained side-effect of many commonly prescribed medications.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J., Montero M., Garcia-Sancho J. Cytochrome P450 may regulate plasma membrane Ca2+ permeability according to the filling state of the intracellular Ca2+ stores. FASEB J. 1992 Jan 6;6(2):786–792. doi: 10.1096/fasebj.6.2.1537469. [DOI] [PubMed] [Google Scholar]
  2. Bonventre J. V. Phospholipase A2 and signal transduction. J Am Soc Nephrol. 1992 Aug;3(2):128–150. doi: 10.1681/ASN.V32128. [DOI] [PubMed] [Google Scholar]
  3. Breitwieser G. E., Altamirano A. A., Russell J. M. Osmotic stimulation of Na(+)-K(+)-Cl- cotransport in squid giant axon is [Cl-]i dependent. Am J Physiol. 1990 Apr;258(4 Pt 1):C749–C753. doi: 10.1152/ajpcell.1990.258.4.C749. [DOI] [PubMed] [Google Scholar]
  4. Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell. 1991 Jun 14;65(6):1043–1051. doi: 10.1016/0092-8674(91)90556-e. [DOI] [PubMed] [Google Scholar]
  5. Como J. A., Dismukes W. E. Oral azole drugs as systemic antifungal therapy. N Engl J Med. 1994 Jan 27;330(4):263–272. doi: 10.1056/NEJM199401273300407. [DOI] [PubMed] [Google Scholar]
  6. Escalante B., Erlij D., Falck J. R., McGiff J. C. Cytochrome P-450 arachidonate metabolites affect ion fluxes in rabbit medullary thick ascending limb. Am J Physiol. 1994 Jun;266(6 Pt 1):C1775–C1782. doi: 10.1152/ajpcell.1994.266.6.C1775. [DOI] [PubMed] [Google Scholar]
  7. Escalante B., Erlij D., Falck J. R., McGiff J. C. Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science. 1991 Feb 15;251(4995):799–802. doi: 10.1126/science.1846705. [DOI] [PubMed] [Google Scholar]
  8. Fitzpatrick F. A., Murphy R. C. Cytochrome P-450 metabolism of arachidonic acid: formation and biological actions of "epoxygenase"-derived eicosanoids. Pharmacol Rev. 1988 Dec;40(4):229–241. [PubMed] [Google Scholar]
  9. Foskett J. K., Melvin J. E. Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science. 1989 Jun 30;244(4912):1582–1585. doi: 10.1126/science.2500708. [DOI] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Haas M., McBrayer D. G. Na-K-Cl cotransport in nystatin-treated tracheal cells: regulation by isoproterenol, apical UTP, and [Cl]i. Am J Physiol. 1994 May;266(5 Pt 1):C1440–C1452. doi: 10.1152/ajpcell.1994.266.5.C1440. [DOI] [PubMed] [Google Scholar]
  12. Haas M. The Na-K-Cl cotransporters. Am J Physiol. 1994 Oct;267(4 Pt 1):C869–C885. doi: 10.1152/ajpcell.1994.267.4.C869. [DOI] [PubMed] [Google Scholar]
  13. Kaplan M. R., Mount D. B., Delpire E. Molecular mechanisms of NaCl cotransport. Annu Rev Physiol. 1996;58:649–668. doi: 10.1146/annurev.ph.58.030196.003245. [DOI] [PubMed] [Google Scholar]
  14. Kersting U., Kersting D., Spring K. R. Ketoconazole activates Cl- conductance and blocks Cl- and fluid absorption by cultured cystic fibrosis (CFPAC-1) cells. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4047–4051. doi: 10.1073/pnas.90.9.4047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lytle C., Forbush B., 3rd Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl. Am J Physiol. 1996 Feb;270(2 Pt 1):C437–C448. doi: 10.1152/ajpcell.1996.270.2.C437. [DOI] [PubMed] [Google Scholar]
  16. Manganel M., Turner R. J. Rapid secretagogue-induced activation of Na+H+ exchange in rat parotid acinar cells. Possible interrelationship between volume regulation and stimulus-secretion coupling. J Biol Chem. 1991 Jun 5;266(16):10182–10188. [PubMed] [Google Scholar]
  17. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  18. Melvin J. E., Turner R. J. Cl- fluxes related to fluid secretion by the rat parotid: involvement of Cl(-)-HCO3- exchange. Am J Physiol. 1992 Mar;262(3 Pt 1):G393–G398. doi: 10.1152/ajpgi.1992.262.3.G393. [DOI] [PubMed] [Google Scholar]
  19. Moore M. L., George J. N., Turner R. J. Anion dependence of bumetanide binding and ion transport by the rabbit parotid Na(+)-K(+)-2Cl- co-transporter: evidence for an intracellular anion modifier site. Biochem J. 1995 Jul 15;309(Pt 2):637–642. doi: 10.1042/bj3090637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Grady S. M., Palfrey H. C., Field M. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. Am J Physiol. 1987 Aug;253(2 Pt 1):C177–C192. doi: 10.1152/ajpcell.1987.253.2.C177. [DOI] [PubMed] [Google Scholar]
  21. Paulais M., Turner R. J. Activation of the Na(+)-K(+)-2Cl- cotransporter in rat parotid acinar cells by aluminum fluoride and phosphatase inhibitors. J Biol Chem. 1992 Oct 25;267(30):21558–21563. [PubMed] [Google Scholar]
  22. Paulais M., Turner R. J. Beta-adrenergic upregulation of the Na(+)-K(+)-2Cl- cotransporter in rat parotid acinar cells. J Clin Invest. 1992 Apr;89(4):1142–1147. doi: 10.1172/JCI115695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robertson M. A., Foskett J. K. Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl-]i. Am J Physiol. 1994 Jul;267(1 Pt 1):C146–C156. doi: 10.1152/ajpcell.1994.267.1.C146. [DOI] [PubMed] [Google Scholar]
  24. Schwartzman M. L., Balazy M., Masferrer J., Abraham N. G., McGiff J. C., Murphy R. C. 12(R)-hydroxyicosatetraenoic acid: a cytochrome-P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8125–8129. doi: 10.1073/pnas.84.22.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Snowdowne K. W., Way B., Thomas G., Chen H. Y., Cashman J. R. pHi controls cytoplasmic calcium in rat parotid cells. Biochim Biophys Acta. 1992 Jul 27;1108(2):145–152. doi: 10.1016/0005-2736(92)90019-i. [DOI] [PubMed] [Google Scholar]
  26. Sreebny L. M., Schwartz S. S. A reference guide to drugs and dry mouth. Gerodontology. 1986 Autumn;5(2):75–99. doi: 10.1111/j.1741-2358.1986.tb00055.x. [DOI] [PubMed] [Google Scholar]
  27. Tanimura A., Kurihara K., Reshkin S. J., Turner R. J. Involvement of direct phosphorylation in the regulation of the rat parotid Na(+)-K(+)-2Cl- cotransporter. J Biol Chem. 1995 Oct 20;270(42):25252–25258. doi: 10.1074/jbc.270.42.25252. [DOI] [PubMed] [Google Scholar]
  28. White M. M., Aylwin M. Niflumic and flufenamic acids are potent reversible blockers of Ca2(+)-activated Cl- channels in Xenopus oocytes. Mol Pharmacol. 1990 May;37(5):720–724. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES